
maro

MARO Team

Jul 05, 2022

INSTALLATION

1 Key Components 3

2 Quick Start 5

3 Contents 7
3.1 Package . 7
3.2 Playground Docker Image . 8
3.3 Grass Cluster Provisioning on Azure . 9
3.4 Grass Cluster Provisioning in On-Premises Environment . 12
3.5 K8S Cluster Provisioning on Azure . 14
3.6 Multi-processes Localhost Provisioning . 17
3.7 Container Inventory Management (CIM) . 20
3.8 Bike Repositioning (Citi Bike) . 27
3.9 Virtual Machine Scheduling (VM Scheduling) . 37
3.10 Command support for scenarios . 45
3.11 Greedy Policy for Citi Bike . 46
3.12 Simulation Toolkit . 48
3.13 Data Model . 49
3.14 Event Buffer . 67
3.15 Business Engine . 68
3.16 RL Toolkit . 69
3.17 Distributed Toolkit . 72
3.18 Distributed Communication . 73
3.19 Distributed Orchestration . 76
3.20 Dashboard Visualization . 79
3.21 Geographic Visualization . 82

i

ii

maro

Multi-Agent Resource Optimization (MARO) platform is an instance of Reinforcement learning as a Service (RaaS)
for real-world resource optimization. It can be applied to many important industrial domains, such as container
inventory management in logistics, bike repositioning in transportation, virtual machine provisioning in data centers,
and asset management in finance. Besides Reinforcement Learning (RL), it also supports other planning/decision
mechanisms, such as Operations Research.

INSTALLATION 1

https://github.com/microsoft/maro
https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
https://en.wikipedia.org/wiki/Operations_research

maro

2 INSTALLATION

CHAPTER

ONE

KEY COMPONENTS

• Simulation toolkit: it provides some predefined scenarios, and the reusable wheels for building new scenarios.

• RL toolkit: it provides a full-stack abstraction for RL, such as agent manager, agent, RL algorithms, learner,
actor, and various shapers.

• Distributed toolkit: it provides distributed communication components, interface of user-defined functions for
message auto-handling, cluster provision, and job orchestration.

3

maro

4 Chapter 1. Key Components

CHAPTER

TWO

QUICK START

from maro.simulator import Env
from maro.simulator.scenarios.cim.common import Action, ActionType, DecisionEvent

from random import randint

Initialize an Env for cim scenario
env = Env(scenario="cim", topology="toy.5p_ssddd_l0.0", start_tick=0, durations=100)

metrics: object = None
decision_event: DecisionEvent = None
is_done: bool = False
action: Action = None

Start the env with a None Action
metrics, decision_event, is_done = env.step(None)

while not is_done:
Generate a random Action according to the action_scope in DecisionEvent
action_scope = decision_event.action_scope
to_discharge = action_scope.discharge > 0 and randint(0, 1) > 0

action = Action(
decision_event.vessel_idx,
decision_event.port_idx,
randint(0, action_scope.discharge if to_discharge else action_scope.load),
ActionType.DISCHARGE if to_discharge else ActionType.LOAD

)

Respond the environment with the generated Action
metrics, decision_event, is_done = env.step(action)

5

maro

6 Chapter 2. Quick Start

CHAPTER

THREE

CONTENTS

3.1 Package

3.1.1 Install MARO from PyPI

• Max OS / Linux

pip install pymaro

• Windows

Install torch first, if you don't have one.
pip install torch===1.6.0 torchvision===0.7.0 -f https://download.pytorch.org/whl/
→˓torch_stable.html

pip install pymaro

3.1.2 Install MARO from Source (Editable Mode)

• Prerequisites

– Python >= 3.7

– C++ Compiler

* Linux or Mac OS X: gcc

* Windows: Build Tools for Visual Studio 2017

• Enable Virtual Environment

– Mac OS / Linux

If your environment is not clean, create a virtual environment firstly.
python -m venv maro_venv
source ./maro_venv/bin/activate

– Windows

If your environment is not clean, create a virtual environment firstly.
python -m venv maro_venv
.\maro_venv\Scripts\activate

• Install MARO

7

https://www.python.org/downloads/
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=15

maro

– Mac OS / Linux

Install MARO from source.
bash scripts/install_maro.sh

– Windows

Install MARO from source.
.\scripts\install_maro.bat

3.2 Playground Docker Image

3.2.1 Pull from Docker Hub

Run playground container.
Redis commander (GUI for redis) -> http://127.0.0.1:40009
Jupyter lab with maro -> http://127.0.0.1:40010
docker run -p 40009:40009 -p 40010:40010 maro2020/playground

3.2.2 Run from Source

• Mac OS / Linux

Build playground image.
bash ./scripts/build_playground.sh

Run playground container.
Redis commander (GUI for redis) -> http://127.0.0.1:40009
Jupyter lab with maro -> http://127.0.0.1:40010
docker run -p 40009:40009 -p 40010:40010 maro2020/playground

• Windows

Build playground image.
.\scripts\build_playground.bat

Run playground container.
Redis commander (GUI for redis) -> http://127.0.0.1:40009
Jupyter lab with maro -> http://127.0.0.1:40010
docker run -p 40009:40009 -p 40010:40010 maro2020/playground

3.2.3 Major Services in Playground

Service Description Host
Redis Commander Redis web GUI. http://127.0.0.1:40009
Jupyter Lab Jupyter lab with MARO environment, examples, notebooks. http://127.0.0.1:40010

(Remember to change ports if you use different ports mapping.)

8 Chapter 3. Contents

http://127.0.0.1:40009
http://127.0.0.1:40010

maro

3.2.4 Major Materials in Root Folder

Folder Description
examples Showcases of predefined scenarios.
notebooks Quick-start tutorial.

(The ones not mentioned in this table can be ignored.)

3.3 Grass Cluster Provisioning on Azure

With the following guide, you can build up a MARO cluster in grass/azure mode on Azure and run your training job
in a distributed environment.

3.3.1 Prerequisites

• Install the Azure CLI (preferred version: v2.20.0) and login

• Install docker and Configure docker to make sure it can be managed as a non-root user

3.3.2 Cluster Management

• Create a cluster with a deployment

Create a grass cluster with a grass-create deployment
maro grass create ./grass-azure-create.yml

• Scale the cluster

Check VM Size to see more node specifications.

Scale nodes with 'Standard_D4s_v3' specification to 2
maro grass node scale myGrassCluster Standard_D4s_v3 2

Scale nodes with 'Standard_D2s_v3' specification to 0
maro grass node scale myGrassCluster Standard_D2s_v3 0

• Delete the cluster

Delete a grass cluster
maro grass delete myGrassCluster

• Start/Stop nodes to save costs

Start 2 nodes with 'Standard_D4s_v3' specification
maro grass node start myGrassCluster Standard_D4s_v3 2

Stop 2 nodes with 'Standard_D4s_v3' specification
maro grass node stop myGrassCluster Standard_D4s_v3 2

• Get statuses of the cluster

3.3. Grass Cluster Provisioning on Azure 9

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes

maro

Get master status
maro grass status myGrassCluster master

Get nodes status
maro grass status myGrassCluster nodes

Get containers status
maro grass status myGrassCluster containers

• Clean up the cluster

Delete all running jobs, schedules, containers in the cluster.

maro grass clean myGrassCluster

3.3.3 Run Job

• Push your training image from local machine

Push image 'myImage' to the cluster,
'myImage' is a docker image that loaded on the machine that executed this
→˓command
maro grass image push myGrassCluster --image-name myImage

• Push your training data

Push dqn folder under './myTrainingData/' to a relative path '/myTrainingData'
→˓in the cluster
You can then assign your mapping location in the start-job-deployment
maro grass data push myGrassCluster ./myTrainingData/dqn /myTrainingData

• Start a training job with a start-job-deployment

Start a training job with a start-job deployment
maro grass job start myGrassCluster ./grass-start-job.yml

• Or, schedule batch jobs with a start-schedule-deployment

These jobs will shared the same specification of components.

A best practice to use this command will be: Push your training configs all at once with “maro
grass data push”, and get the jobName from environment variables in the containers, then use
the specific training config based on the jobName.

Start a training schedule with a start-schedule deployment
maro grass schedule start myGrassCluster ./grass-start-schedule.yml

• Get the logs of the job

Get the logs of the job
maro grass job logs myGrassCluster myJob1

• List the current status of the job

List the current status of the job
maro grass job list myGrassCluster

10 Chapter 3. Contents

maro

• Stop a training job

Stop a training job
maro grass job stop myJob1

3.3.4 Sample Deployments

grass-azure-create

mode: grass/azure
name: myGrassCluster

cloud:
resource_group: myResourceGroup
subscription: mySubscription
location: eastus
default_username: admin
default_public_key: "{ssh public key}"

user:
admin_id: admin

master:
node_size: Standard_D2s_v3

grass-start-job

You can replace {project root} with a valid linux path. e.g. /home/admin

Then the data you push will be mount into this folder.

mode: grass
name: myJob1

allocation:
mode: single-metric-balanced
metric: cpu

components:
actor:
command: "python {project root}/myTrainingData/dqn/job1/start_actor.py"
image: myImage
mount:

target: "{project root}"
num: 5
resources:

cpu: 1
gpu: 0
memory: 1024m

learner:
command: "python {project root}/myTrainingData/dqn/job1/start_learner.py"
image: myImage
mount:

target: "{project root}"

(continues on next page)

3.3. Grass Cluster Provisioning on Azure 11

maro

(continued from previous page)

num: 1
resources:
cpu: 2
gpu: 0
memory: 2048m

grass-start-schedule

mode: grass
name: mySchedule1

allocation:
mode: single-metric-balanced
metric: cpu

job_names:
- myJob2
- myJob3
- myJob4
- myJob5

components:
actor:
command: "python {project root}/myTrainingData/dqn/schedule1/actor.py"
image: myImage
mount:

target: “{project root}”
num: 5
resources:

cpu: 1
gpu: 0
memory: 1024m

learner:
command: "bash {project root}/myTrainingData/dqn/schedule1/learner.py"
image: myImage
mount:

target: "{project root}"
num: 1
resources:

cpu: 2
gpu: 0
memory: 2048m

3.4 Grass Cluster Provisioning in On-Premises Environment

With the following guide, you can build up a MARO cluster in grass/on-premises in local private network and run
your training job in On-Premises distributed environment.

12 Chapter 3. Contents

maro

3.4.1 Prerequisites

• Linux with Python 3.7+

• Install Powershell if you are using Windows Server

• For master node vm, need install flask, gunicorn, and redis.

3.4.2 Cluster Management

• Create a cluster with a deployment

Create a grass cluster with a grass-create deployment
maro grass create ./grass-azure-create.yml

• Let a node join a specified cluster

Let a worker node join into specified cluster
maro grass node join ./node-join.yml

• Let a node leave a specified cluster

Let a worker node leave a specified cluster
maro grass node leave {cluster_name} {node_name}

• Delete the cluster

Delete a grass cluster
maro grass delete my_grass_cluster

3.4.3 Run Job

See Run Job in grass/azure for reference.

3.4.4 Sample Deployments

grass-on-premises-create

mode: grass/on-premises
name: clusterName

user:
admin_id: admin

master:
username: root
hostname: maroMaster
public_ip_address: 137.128.0.1
private_ip_address: 10.0.0.4

3.4. Grass Cluster Provisioning in On-Premises Environment 13

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.1

maro

grass-on-premises-join-cluster

mode: grass/on-premises

master:
private_ip_address: 10.0.0.4

node:
hostname: maroNode1
username: root
public_ip_address: 137.128.0.2
private_ip_address: 10.0.0.5
resources:
cpu: all
memory: 2048m
gpu: 0

config:
install_node_runtime: true
install_node_gpu_support: false

3.5 K8S Cluster Provisioning on Azure

With the following guide, you can build up a MARO cluster in k8s/aks on Azure and run your training job in a
distributed environment.

3.5.1 Prerequisites

• Install the Azure CLI and login

• Install and set up kubectl

• Install docker and Configure docker to make sure it can be managed as a non-root user

• Download AzCopy, then move the AzCopy executable to /bin folder or add the directory location of the AzCopy
executable to your system path:

Take AzCopy version 10.6.0 as an example

Linux
tar xvf ./azcopy_linux_amd64_10.6.0.tar.gz; cp ./azcopy_linux_amd64_10.6.0/azcopy /
→˓usr/local/bin

MacOS (may required MacOS Security & Privacy setting)
unzip ./azcopy_darwin_amd64_10.6.0.zip; cp ./azcopy_darwin_amd64_10.6.0/azcopy /usr/
→˓local/bin

Windows
1. Unzip ./azcopy_windows_amd64_10.6.0.zip
2. Add the path of ./azcopy_windows_amd64_10.6.0 folder to your Environment
→˓Variables
Ref: https://superuser.com/questions/949560/how-do-i-set-system-environment-
→˓variables-in-windows-10

14 Chapter 3. Contents

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10

maro

3.5.2 Cluster Management

• Create a cluster with a deployment

Create a k8s cluster
maro k8s create ./k8s-azure-create.yml

• Scale the cluster

Check `VM Size <https://docs.microsoft.com/en-us/azure/virtual-machines/sizes>`_
→˓ to see more node specifications.

Scale nodes with 'Standard_D4s_v3' specification to 2
maro k8s node scale myK8sCluster Standard_D4s_v3 2

Scale nodes with 'Standard_D2s_v3' specification to 0
maro k8s node scale myK8sCluster Standard_D2s_v3 0

• Delete the cluster

Delete a k8s cluster
maro k8s delete myK8sCluster

3.5.3 Run Job

• Push your training image

Push image 'myImage' to the cluster
maro k8s image push myK8sCluster --image-name myImage

• Push your training data

Push dqn folder under './myTrainingData/' to a relative path '/myTrainingData'
→˓in the cluster
You can then assign your mapping location in the start-job-deployment
maro k8s data push myGrassCluster ./myTrainingData/dqn /myTrainingData

• Start a training job with a deployment

Start a training job with a start-job-deployment
maro k8s job start myK8sCluster ./k8s-start-job.yml

• Or, schedule batch jobs with a deployment

Start a training schedule with a start-schedule-deployment
maro k8s schedule start myK8sCluster ./k8s-start-schedule.yml

• Get the logs of the job

Logs will be exported to current directory
maro k8s job logs myK8sCluster myJob1

• List the current status of the job

List current status of jobs
maro k8s job list myK8sCluster myJob1

3.5. K8S Cluster Provisioning on Azure 15

maro

• Stop a training job

Stop a training job
maro k8s job stop myK8sCluster myJob1

3.5.4 Sample Deployments

k8s-aks-create

mode: k8s/aks
name: myK8sCluster

cloud:
subscription: mySubscription
resource_group: myResourceGroup
location: eastus
default_public_key: "{ssh public key}"
default_username: admin

master:
node_size: Standard_D2s_v3

k8s-start-job

mode: k8s/aks
name: myJob1

components:
actor:
command: ["python", "{project root}/myTrainingData/dqn/start_actor.py"]
image: myImage
mount:

target: "{project root}"
num: 5
resources:

cpu: 2
gpu: 0
memory: 2048M

learner:
command: ["python", "{project root}/myTrainingData/dqn/start_learner.py"]
image: myImage
mount:

target: "{project root}"
num: 1
resources:

cpu: 2
gpu: 0
memory: 2048M

16 Chapter 3. Contents

maro

k8s-start-schedule

mode: k8s/aks
name: mySchedule1

job_names:
- myJob2
- myJob3
- myJob4
- myJob5

components:
actor:
command: ["python", "{project root}/myTrainingData/dqn/start_actor.py"]
image: myImage
mount:

target: "{project root}"
num: 5
resources:
cpu: 2
gpu: 0
memory: 2048M

learner:
command: ["python", "{project root}/myTrainingData/dqn/start_learner.py"]
image: myImage
mount:

target: "{project root}"
num: 1
resources:

cpu: 2
gpu: 0
memory: 2048M

3.6 Multi-processes Localhost Provisioning

With the following guide, it is easy to implement your training jobs through the multi-processes in the localhost
environment.

3.6. Multi-processes Localhost Provisioning 17

maro

3.6.1 Prerequisites

• Linux with Python 3.7+

• Redis

3.6.2 Cluster Management

• Get job/schedule deployment template to ./target/path.

Get deployment template
maro process template ./target/path

• Create a localhost environment by default parameters.

Create localhost multi-process environment
maro process create

• Create a localhost environment with setting-deployment.

Get process_setting_deployment to current path.
maro process template --setting_deploy .

maro process create ./process_setting_deployment.yml

• Delete a localhost environment.

Delete localhost multi-process environment
maro process delete

• Start a training job with job-deployment.

Start a training job
maro process job start ./process_job_deployment.yml

• Stop a training job.

Stop a training job with job_name
maro process job stop job_name

• Delete a job including remove job details in Redis.

Delete a job
maro process job delete job_name

• List all jobs.

List all jobs
maro process job list

• Get job’s log with job_name, dumps to current path.

Get job's log
maro process job logs job_name

• Start a schedule with schedule-deployment.

18 Chapter 3. Contents

maro

Start a schedule
maro process schedule start ./process_schedule_deployment.yml

• Stop a schedule.

Stop a schedule with schedule name
maro process schedule stop schedule_name

3.6.3 Sample Deployments

process-setting-deployment

redis_info:
host: "localhost"
port: 19999

redis_mode: MARO # one of [MARO, customized]. customized Redis won't be exited
→˓after maro process clear.
parallel_level: 1 # Represented the maximum number of running jobs in the same
→˓times.
keep_agent_alive: 1 # If 1 represented the agents won't exit until the environment
→˓delete; otherwise, 0.
agent_countdown: 5 # After agent_countdown times checks, still no jobs will close
→˓agents. Available only if keep_agent_alive is 0.
check_interval: 60 # The time interval (seconds) of agents check with Redis

process-job-deployment

mode: process
name: MyJobName

components:
actor:

num: 5
command: "python /target/path/run_actor.py"

learner:
num: 1
command: "python /target/path/run_learner.py"

process-schedule-deployment

mode: process
name: MyScheduleName

job_names:
- MyJobName2
- MyJobName3
- MyJobName4
- MyJobName5

components:
actor:

(continues on next page)

3.6. Multi-processes Localhost Provisioning 19

maro

(continued from previous page)

num: 5
command: "python /target/path/run_actor.py"

learner:
num: 1
command: "python /target/path/run_learner.py"

3.7 Container Inventory Management (CIM)

The Container Inventory Management (CIM) scenario simulates a common problem of container shipping in marine
transportation. Imagine an international market: The goods are packed in containers and shipped by vessels from
the exporting country to the importing country. As a result of the imbalanced global trade, the volume of available
containers in different ports may not match their needs. In other words, some ports will have excess containers while
some ports may be in short. Therefore, We can use the excess capacity on vessels to reposition empty containers to
alleviate this imbalance.

3.7.1 Resource Flow

In this scenario, the container is the central resource. Two events will trigger the movement of the container:

• The first one is the order, which will lead to the transportation of goods from the source port to the destination
port.

• The second one is the repositioning operation. It is used to rebalance the container distribution worldwide.

Order

To simulate a real market, we assume that there will be a certain number of orders from some ports to other ports
every day. And the total order number of each day is generated according to a predefined distribution. These orders
are then allocated to each export port in a relatively fixed proportion, and each export port will have a relatively fixed
number of import ports as customers. The order distribution and the proportion of order allocation are specified in the
topology and can be customized based on different requirements.

An order will trigger a life cycle of a container, as shown in the figure above, a life cycle is defined as follows:

• Once an order is generated, an empty container of the corresponding export port (source port) will be released
to the shipper.

• The shipper will fill the container with cargo which turns it into a laden and then return it to the port after a few
days.

• Loading occurs when the vessel arrives at this port.

• After several days of sailing, the vessel will finally arrive at the corresponding import port (destination port)
where the discharging of the laden happens.

• Then the laden will be released to the consignee, and the consignee will take out the cargo in it, which turns it
into an empty container again.

• Finally, the consignee returns it as an available container for the import port in a few days.

20 Chapter 3. Contents

../images/scenario/cim.container_flow.svg

maro

Container Repositioning

As mentioned above, to rebalance the container distribution, the agent in each port will decide how to reposition the
empty containers every time a vessel arrives at the port. The decision consists of two parts:

• Whether to take a discharge operation or a load operation;

• The number of containers to discharge/load.

The export-oriented ports (e.g. the ports in China) show a clearly high demand feature, and usually require additional
supply of empty containers. These ports will tend to discharge empty containers from the vessel if feasible. While the
import-oriented ports have a significant surplus feature, that usually receive many empty container from the consignee.
So the imported-oriented ports will tend to load the surplus empty containers into the vessel if there is free capacity.

The specific quantity to operate for a discharge action is limited by the remaining space in the port and the total
number of empty containers in the vessel. Similarly, a load action is limited by the remaining space in the vessel
and the total number of empty containers in the port. Of course, a good decision will not only consider the self future
supply and demand situation, but also the needs and situation of the upstream and downstream ports.

3.7.2 Topologies

To provide an exploration road map from easy to difficult, two kinds of topologies are designed and provided in
CIM scenario. Toy topologies provide simplified environments for algorithm debugging and will show some typical
relationships between ports to users. We hope these will provide users with some insights to know more and deeper
about this scenario. While the global topologies are based on the real-world data, and are bigger and more complicated
to present the real problem.

Toy Topologies

(In these topologies, the solid lines indicate the service route (voyage) among ports, while the dashed lines indicate
the container flow triggered by orders.)

toy.4p_ssdd_l0.D: There are four ports in this topology. According to the orders, D1 and D2 are simple demanders
(the port requiring additional empty containers) while S2 is a simple supplier (the port with surplus empty containers).
Although S1 is a simple destination port, it’s at the intersection of two service routes, which makes it a special port in
this topology. To achieve the global optimum, S1 must learn to distinguish the service routes and take service route
specific repositioning operations.

toy.5p_ssddd_l0.D: There are five ports in this topology. According to the orders, D1 and D2 are simple demanders
while S1 and S2 are simple suppliers. As a port in the intersection of service routes, although the supply and demand
of port T1 can reach a state of self-balancing, it still plays an important role for the global optimum. The best
repositioning policy for port T1 is to transfer the surplus empty containers from the left service route to the right one.
Also, the port D1 and D2 should learn to discharge only the quantity they need and leave the surplus ones to other
ports.

toy.6p_sssbdd_l0.D: There are six ports in this topology. Similar to toy.5p_ssddd, in this topology, there are simple
demanders D1 and D2, simple suppliers S1 and S2, and self-balancing ports T1 and T2. More difficult than in
toy.5p_ssddd, more transfers should be taken to reposition the surplus empty containers from the left most service
route to the right most one, which means a multi-steps solution that involving more ports is required.

3.7. Container Inventory Management (CIM) 21

../images/scenario/cim.toys.svg

maro

Global Topologies

global_trade.22p_l0.D: This is a topology designed based on the real-world data. The order generation model in this
topology is built based on the trade data from WTO. According to the query results in WTO from January 2019 to
October 2019, The ports with large trade volume are selected, and the proportion of each port as the source of orders
is directly proportional to the export volume of the country it belongs to, while the proportion as the destination is
proportional to the import volume. In this scenario, there are much more ports, much more service routes. And most
ports no longer have a simple supply/demand feature. The cooperation among ports is much more complex and it is
difficult to find an efficient repositioning policy manually.

(To make it clearer, the figure above only shows the service routes among ports.)

Naive Baseline

Below are the final environment metrics of the method no repositioning and random repositioning in different topolo-
gies. For each experiment, we setup the environment and test for a duration of 1120 ticks (days).

No Repositioning

Topology Total Requirement Resource Shortage Repositioning Number
toy.4p_ssdd_l0.0 2,240,000 2,190,000 0
toy.4p_ssdd_l0.1 2,240,000 2,190,000 0
toy.4p_ssdd_l0.2 2,240,000 2,190,000 0
toy.4p_ssdd_l0.3 2,239,460 2,189,460 0
toy.4p_ssdd_l0.4 2,244,068 2,194,068 0
toy.4p_ssdd_l0.5 2,244,068 2,194,068 0
toy.4p_ssdd_l0.6 2,244,068 2,194,068 0
toy.4p_ssdd_l0.7 2,244,068 2,194,068 0
toy.4p_ssdd_l0.8 2,241,716 2,191,716 0

Topology Total Requirement Resource Shortage Repositioning Number
toy.5p_ssddd_l0.0 2,240,000 2,140,000 0
toy.5p_ssddd_l0.1 2,240,000 2,140,000 0
toy.5p_ssddd_l0.2 2,240,000 2,140,000 0
toy.5p_ssddd_l0.3 2,239,460 2,139,460 0
toy.5p_ssddd_l0.4 2,244,068 2,144,068 0
toy.5p_ssddd_l0.5 2,244,068 2,144,068 0
toy.5p_ssddd_l0.6 2,244,068 2,144,068 0
toy.5p_ssddd_l0.7 2,244,068 2,144,068 0
toy.5p_ssddd_l0.8 2,241,716 2,141,716 0

22 Chapter 3. Contents

https://data.wto.org/
../images/scenario/cim.global_trade.svg

maro

Topology Total Requirement Resource Shortage Repositioning Number
toy.6p_sssbdd_l0.0 2,240,000 2,087,000 0
toy.6p_sssbdd_l0.1 2,240,000 2,087,000 0
toy.6p_sssbdd_l0.2 2,240,000 2,087,000 0
toy.6p_sssbdd_l0.3 2,239,460 2,086,460 0
toy.6p_sssbdd_l0.4 2,244,068 2,091,068 0
toy.6p_sssbdd_l0.5 2,244,068 2,091,068 0
toy.6p_sssbdd_l0.6 2,244,068 2,091,068 0
toy.6p_sssbdd_l0.7 2,244,068 2,091,068 0
toy.6p_sssbdd_l0.8 2,241,716 2,088,716 0

Topology Total Requirement Resource Shortage Repositioning Number
global_trade.22p_l0.0 2,240,000 1,028,481 0
global_trade.22p_l0.1 2,240,000 1,081,935 0
global_trade.22p_l0.2 2,240,000 1,083,358 0
global_trade.22p_l0.3 2,239,460 1,085,212 0
global_trade.22p_l0.4 2,244,068 1,089,628 0
global_trade.22p_l0.5 2,244,068 1,102,913 0
global_trade.22p_l0.6 2,244,068 1,122,092 0
global_trade.22p_l0.7 2,244,068 1,162,108 0
global_trade.22p_l0.8 2,241,716 1,161,714 0

Random Repositioning

Topology Total Requirement Resource Shortage Repositioning Number
toy.4p_ssdd_l0.0 2,240,000 1,497,138 ± 30,423 4,185,080 ± 185,140
toy.4p_ssdd_l0.1 2,240,000 1,623,710 ± 36,421 2,018,360 ± 36,700
toy.4p_ssdd_l0.2 2,240,000 1,501,466 ± 48,566 2,145,180 ± 90,300
toy.4p_ssdd_l0.3 2,239,460 1,577,011 ± 35,109 2,098,500 ± 35,120
toy.4p_ssdd_l0.4 2,244,068 1,501,835 ± 103,196 2,180,480 ± 33,020
toy.4p_ssdd_l0.5 2,244,068 1,546,227 ± 81,107 2,077,320 ± 113,740
toy.4p_ssdd_l0.6 2,244,068 1,578,863 ± 127,815 2,220,720 ± 106,660
toy.4p_ssdd_l0.7 2,244,068 1,519,495 ± 60,555 2,441,480 ± 79,700
toy.4p_ssdd_l0.8 2,241,716 1,603,063 ± 109,149 2,518,920 ± 193,200

3.7. Container Inventory Management (CIM) 23

maro

Topology Total Requirement Resource Shortage Repositioning Number
toy.5p_ssddd_l0.0 2,240,000 1,371,021 ± 34,619 3,966,120 ± 138,960
toy.5p_ssddd_l0.1 2,240,000 1,720,068 ± 18,939 1,550,280 ± 25,600
toy.5p_ssddd_l0.2 2,240,000 1,716,435 ± 15,499 1,496,860 ± 31,260
toy.5p_ssddd_l0.3 2,239,460 1,700,456 ± 26,510 1,586,640 ± 11,500
toy.5p_ssddd_l0.4 2,244,068 1,663,139 ± 34,244 1,594,160 ± 103,040
toy.5p_ssddd_l0.5 2,244,068 1,681,519 ± 107,863 1,635,360 ± 61,880
toy.5p_ssddd_l0.6 2,244,068 1,660,330 ± 38,318 1,630,060 ± 81,580
toy.5p_ssddd_l0.7 2,244,068 1,709,022 ± 31,440 1,854,340 ± 167,080
toy.5p_ssddd_l0.8 2,241,716 1,763,950 ± 73,935 1,858,420 ± 60,680

Topology Total Requirement Resource Shortage Repositioning Number
toy.6p_sssbdd_l0.0 2,240,000 1,529,774 ± 73,104 3,989,560 ± 232,740
toy.6p_sssbdd_l0.1 2,240,000 1,736,385 ± 16,736 1,122,120 ± 28,960
toy.6p_sssbdd_l0.2 2,240,000 1,765,945 ± 4,680 1,052,520 ± 44,020
toy.6p_sssbdd_l0.3 2,239,460 1,811,987 ± 15,436 998,740 ± 69,680
toy.6p_sssbdd_l0.4 2,244,068 1,783,362 ± 39,122 1,059,860 ± 49,100
toy.6p_sssbdd_l0.5 2,244,068 1,755,551 ± 44,855 1,101,100 ± 55,180
toy.6p_sssbdd_l0.6 2,244,068 1,830,504 ± 10,690 1,141,660 ± 10,520
toy.6p_sssbdd_l0.7 2,244,068 1,742,129 ± 23,910 1,311,420 ± 64,560
toy.6p_sssbdd_l0.8 2,241,716 1,761,283 ± 22,338 1,336,540 ± 30,020

Topology Total Requirement Resource Shortage Repositioning Number
global_trade.22p_l0.0 2,240,000 1,010,009 ± 20,942 548,240 ± 14,600
global_trade.22p_l0.1 2,240,000 1,027,395 ± 19,183 188,160 ± 12,940
global_trade.22p_l0.2 2,240,000 1,035,851 ± 4,352 181,240 ± 5,240
global_trade.22p_l0.3 2,239,460 1,032,480 ± 1,332 190,220 ± 8,920
global_trade.22p_l0.4 2,244,068 1,034,412 ± 11,689 186,080 ± 6,280
global_trade.22p_l0.5 2,244,068 1,042,869 ± 16,146 188,720 ± 7,880
global_trade.22p_l0.6 2,244,068 1,096,502 ± 26,896 302,280 ± 27,540
global_trade.22p_l0.7 2,244,068 1,144,981 ± 5,355 283,520 ± 25,700
global_trade.22p_l0.8 2,241,716 1,154,184 ± 7,043 270,960 ± 2,240

24 Chapter 3. Contents

maro

3.7.3 Quick Start

Data Preparation

To start a simulation in CIM scenario, no extra data processing is needed. You can just specify the scenario and the
topology when initialize an environment and enjoy your exploration in this scenario.

Environment Interface

Before starting interaction with the environment, we need to know the definition of DecisionEvent and Action
in CIM scenario first. Besides, you can query the environment snapshot list to get more detailed information for the
decision making.

DecisionEvent

Once the environment need the agent’s response to promote the simulation, it will throw an DecisionEvent. In
the scenario of CIM, the information of each DecisionEvent is listed as below:

• tick (int): The corresponding tick.

• port_idx (int): The id of the port/agent that needs to respond to the environment.

• vessel_idx (int): The id of the vessel/operation object of the port/agent.

• action_scope (ActionScope): ActionScope has two attributes:

– load indicates the maximum quantity that can be loaded from the port the vessel.

– discharge indicates the maximum quantity that can be discharged from the vessel to the port.

• early_discharge (int): When the available capacity in the vessel is not enough to load the ladens, some of the
empty containers in the vessel will be early discharged to free the space. The quantity of empty containers that
have been early discharged due to the laden loading is recorded in this field.

Action

Once we get a DecisionEvent from the environment, we should respond with an Action. Valid Action could
be:

• None, which means do nothing.

• A valid Action instance, including:

– vessel_idx (int): The id of the vessel/operation object of the port/agent.

– port_idx (int): The id of the port/agent that take this action.

– action_type (ActionType): Whether to load or discharge empty containers in this action.

– quantity (int): The (non-negative) quantity of empty containers to be loaded/discharged.

3.7. Container Inventory Management (CIM) 25

../key_components/data_model.html#advanced-features

maro

Example

Here we will show you a simple example of interaction with the environment in random mode, we hope this could
help you learn how to use the environment interfaces:

Jump to this notebook for a quick experience.

3.7.4 Visualization

The resource holders in this scenario is the port and vessel. In order to facilitate users to select specific data and observe
the overall or partial data trend, the visualization tool provides data selection options in two dimensions: Inter-epoch
view & Intra-epoch view.

Inter-epoch view

To change “Start Epoch” and “End Epoch”, user could specify the selected data range. To change “Epoch Sampling
Ratio”, user could change the sampling rate of selected data.

Intra-epoch view

This part shows the data under a selected epoch. By scrolling the slider, users can select different epochs. Furthermore,
this part of data is divided into two dimensions: by snapshot and by port according to time and space. In terms of
data display, according to the different types of attributes, it is divided into two levels: accumulated data (accumulated
attributes. e.g. acc_fulfillment) and detail data.

If user choose to view information by ports, attributes of the selected port would be displayed.

If user choose to view data by snapshots, attributes of selected snapshot would be displayed. The charts and data
involved in this part are relatively rich, and we will introduce them by level.

Accumulated Data

This part includes the transfer volume heat map, bar chart of port accumulated attributes and top-k ports of different
attributes.

As shown in the following example, the x-axis and y-axis of transfer volume heat map refers to terminal port index
and start port index respectively. The rect refers to the volume of cargoes transfer from start port to terminal port. By
changing the snapshot index, user could view the dynamic changes in the volume of cargo delivered by the port over
time in the current epoch.

The bar chart of Port Accumulated Attributes displays the global change of ports.

26 Chapter 3. Contents

https://github.com/microsoft/maro/tree/master/notebooks/container_inventory_management/interact_with_environment.ipynb

maro

Detail Data

Since the cargoes is transported through vessels, information of vessels could be viewed by snapshot. Same as ports,
user could change the sampling rate of vessels.

3.8 Bike Repositioning (Citi Bike)

The Citi Bike scenario simulates the bike repositioning problem triggered by the one-way bike trips based on the
public trip data from Citi Bike.

Citi Bike is New York City’s bike share system, which consists of a fleet of bikes that are locked into a
network of docking stations throughout the city. The bikes can be unlocked from one station and returned
to any other station in the system, making them ideal for one-way trips. People use bike share to commute
to work or school, run errands, get to appointments or social engagements, and more.

Since the demand for bikes and empty docks is dynamically changed during a day, and the bike flow between two
stations are not equal in a same period, some stations suffer from severe bike shortages, while some have too much
bikes and too few empty docks. In such a situation, the bike repositioning is essential to balance the bike’s supply and
demand. A good bike repositioning can not only meet the needs in the stations with heavy ride demand but also free
the stations that do not have enough empty docks. Also, in the long run, a good bike repositioning can improve the
bike usability, empower citizens’ daily life, and reduce the carbon emission.

3.8.1 Resource Flow

In this scenario, the bike is the central resource. Two events will trigger the movement of the bike:

• The first one is the trip requirement, which may cause the bike transfer from the source station to the destination
station;

• The second one is the repositioning operation. It is used to rebalance the bike distribution among stations.

Bike Trip

In the citi bike scenario in MARO, the trip generation and the corresponding bike flow is defined as follows:

• Given a fixed time interval, for each specific source-destination station pair, a trip requirement will arise accord-
ing to a predefined distribution or the real trip data. It depends on the chosen topology.

• If there are enough available bikes in the source station of the trip requirement, the required bike(s) will be
unlocked and assigned to this trip. Otherwise, a shortage will be recorded in the source station.

• The trip duration is read from the trip log if real trip data is used. Otherwise, the duration will be sampled from
a specific random distribution.

• At the end of the trip, the bike will be returned to the destination station. But if the destination does not have
enough available docks, the bike will be returned to the nearest station with available docks.

3.8. Bike Repositioning (Citi Bike) 27

https://www.citibikenyc.com/

maro

Bike Repositioning

As for the repositioning operation, the simulator in MARO will regularly check the remaining bikes in each station and
compare it with a predefined low watermark and high watermark. If the bike inventory is lower than the low watermark,
the station will generate a Demand event to request the supply of bikes from its neighboring stations. Similarly, if
the bike inventory is higher than the high watermark, the station will generate a Supply event to transport excess
bikes to its neighboring stations. The low watermark and the high watermark is specified in the topology and can be
customized based on different requirements.

The target station candidates of the Supply and Demand events are selected by a predefined multi-layer filter in this
scenario:

1. The distance between the caller station and the neighboring stations will be used to filter and get a specific
number of stations;

2. The number of available bikes at each candidate station will be used to further filter on the candidate stations.
For a Supply event, the stations with less bikes will be kept, while for a Demand event, the stations with more
bikes will be kept;

3. The future trip requirement of the target station will be the last filter. For a Supply event, the stations with
more future trip requirement will be left in the final station candidate set, while the stations with less future trip
requirement will be left for Demand event.

The size of the candidate sets in each filter level is specified in the topology and can be customized based on different
requirements.

Once the target station candidate is filtered, the action scope for each candidate will also be calculated in the
simulator and return to the decision agent together with some other information in the DecisionEvent. For a Supply
event, the bike inventory of the caller station and the number of available docks of the target station candidates will
be attached. On the contrary, for a Demand event, the number of available docks of the source station and the bike
inventory of the target station candidates will be attached.

Based on the given target station candidates and the corresponding action scope, the decision agent of the caller
station should decide how many bikes to transfer to/request from the target station. We call a pair of (target
station, bike number) a repositioning action. After an action taken, the destination station should wait for
a certain period to get the bikes available for trip requirement. The action lead time is sampled from a predefined
distribution.

3.8.2 Topologies

To provide an exploration road map from easy to difficult, two kinds of topologies are designed and provided in
Citi Bike scenario. Toy topologies provide a super simplified environment for algorithm debugging, while the real
topologies with real data from Citi Bike historical trips can present the real problem to users.

Toy Topologies

In toy topology, the generation of the trip requirements follows a stable pattern as introduced above. The detailed trip
demand pattern are listed as below. And we hope that these toy topologies can provide you with some insights about
this scenario.

toy.3s_4t: There are three stations in this topology. Every two minutes, there will be a trip requirement from S2 to S3
and a trip requirement from S3 to S2. At the same time, every two minutes, the system will generate trip requirement
from S1 to S3 and from S1 to S2 with a fixed probability (80% and 20%, respectively). In this topology, the traffic
flow between S2 and S3 is always equal, but station S1 is a super consumer with only bikes flow out. So the best

28 Chapter 3. Contents

https://en.wikipedia.org/wiki/Lead_time
../images/scenario/citibike.toys.svg

maro

repositioning policy in this topology is to reposition bikes from S2 and S3 to S1. It requires the active request action
of S1 or the proactive transfer action of S2 and S3.

toy.4s_4t: There are four stations in this topology. According to the global trip demand, there are more returned bikes
than leaving bikes in station S1 and S3, while more leaving bikes than returned bikes in station S2 and S4. So the
best repositioning policy in this topology is to reposition the excess bikes from S1 and S3 to S2 and S4. Furthermore,
the cooperation between these stations is also necessary since only a proper allocation can lead to a globally optimal
solution.

toy.5s_6t: There are five stations in this topology. Although trip demand is more complex than the other two topologies
above, we can still find that station S1 is a self-balancing station, station S2 and S5 have more returned bikes, and
station S3 and S4 have more leaving bikes. Just like in topology toy.4s_4t, the best repositioning policy is to reposition
excess bikes from S2 and S5 to S3 and S4 coordinately.

Real Topologies

ny.YYYYMM: Different from the stable generation model in the toy topologies, the trip requirement in the topology
ny.YYYYMM is generated based on the real trip data from Citi Bike, which includes the source station, the destination
station, and the duration of each trip. Besides, the total number of available bikes in this kind of topologies is counted
from the real trip data of the specific month. Weighted by the the latest capacity of each stations, the available bikes
are allocated to each station, which constitutes the initial bike inventory of each station. In this series of topologies,
the definition of the bike flow and the trigger mechanism of repositioning actions are the same as those in the toy
topologies. We provide this series of topologies to better simulate the actual Citi Bike scenario.

Naive Baseline

Below are the final environment metrics of the method no repositioning and random repositioning in different topolo-
gies. For each experiment, we setup the environment and test for a duration of 1 week.

No Repositioning

Topology Total Requirement Resource Shortage Repositioning Number
toy.3s_4t 15,118 8,233 0
toy.4s_4t 9,976 7,048 0
toy.5s_6t 16,341 9,231 0

3.8. Bike Repositioning (Citi Bike) 29

https://www.citibikenyc.com/

maro

Topology Total Requirement Resource Shortage Repositioning Number
ny.201801 48,089 2,688 0
ny.201802 126,374 8,814 0
ny.201803 138,952 10,942 0
ny.201804 161,443 10,349 0
ny.201805 323,375 29,081 0
ny.201806 305,971 26,412 0
ny.201807 254,715 19,669 0
ny.201808 302,589 26,352 0
ny.201809 313,002 28,472 0
ny.201810 339,268 24,109 0
ny.201811 263,227 21,485 0
ny.201812 209,102 15,876 0

Topology Total Requirement Resource Shortage Repositioning Number
ny.201901 161,474 10,775 0
ny.201902 187,354 12,593 0
ny.201903 148,371 7,193 0
ny.201904 280,852 16,906 0
ny.201905 287,290 27,213 0
ny.201906 379,415 33,968 0
ny.201907 309,365 21,105 0
ny.201908 371,969 33,703 0
ny.201909 344,847 24,528 0
ny.201910 351,855 29,544 0
ny.201911 324,327 29,489 0
ny.201912 184,015 14,205 0

Topology Total Requirement Resource Shortage Repositioning Number
ny.202001 169,304 12,449 0
ny.202002 206,105 14,794 0
ny.202003 235,986 15,436 0
ny.202004 91,810 2,348 0
ny.202005 169,412 5,231 0
ny.202006 197,883 7,608 0

30 Chapter 3. Contents

maro

Random Repositioning

Topology Total Requirement Resource Shortage Repositioning Number
toy.3s_4t 15,154 8,422 ± 11 449 ± 22
toy.4s_4t 10,186 4,371 ± 72 3,392 ± 83
toy.5s_6t 16,171 7,513 ± 40 3,242 ± 71

Topology Total Requirement Resource Shortage Repositioning Number
ny.201801 48,089 6,693 ± 138 445,996 ± 6,756
ny.201802 126,374 21,418 ± 120 446,564 ± 3,505
ny.201803 138,952 22,121 ± 272 448,259 ± 1,831
ny.201804 161,443 22,201 ± 194 453,705 ± 3,697
ny.201805 323,375 54,365 ± 538 470,771 ± 5,337
ny.201806 305,971 49,876 ± 1,091 481,443 ± 6,981
ny.201807 254,715 46,199 ± 204 483,788 ± 982
ny.201808 302,589 53,679 ± 433 485,137 ± 2,557
ny.201809 313,002 61,432 ± 75 474,851 ± 2,908
ny.201810 339,268 64,269 ± 600 461,928 ± 1,018
ny.201811 263,227 40,440 ± 239 467,050 ± 6,595
ny.201812 209,102 26,067 ± 234 457,173 ± 6,444

Topology Total Requirement Resource Shortage Repositioning Number
ny.201901 161,474 19,295 ± 155 444,445 ± 2,287
ny.201902 187,354 23,875 ± 282 456,888 ± 362
ny.201903 148,371 12,451 ± 312 409,226 ± 5,392
ny.201904 280,852 29,591 ± 170 464,671 ± 6,148
ny.201905 287,290 44,199 ± 542 485,077 ± 6,140
ny.201906 379,415 51,396 ± 256 503,503 ± 4,742
ny.201907 309,365 33,861 ± 643 500,443 ± 4,314
ny.201908 371,969 51,319 ± 417 516,684 ± 1,400
ny.201909 344,847 34,532 ± 466 476,965 ± 3,932
ny.201910 351,855 37,828 ± 502 496,135 ± 4,167
ny.201911 324,327 34,745 ± 427 484,599 ± 8,771
ny.201912 184,015 20,119 ± 110 437,311 ± 5,936

3.8. Bike Repositioning (Citi Bike) 31

maro

Topology Total Requirement Resource Shortage Repositioning Number
ny.202001 169,304 17,152 ± 218 476,821 ± 1,052
ny.202002 206,105 24,223 ± 209 480,012 ± 1,547
ny.202003 235,986 23,749 ± 654 458,536 ± 1,457
ny.202004 91,810 3,349 ± 48 326,817 ± 3.131
ny.202005 169,412 10,177 ± 216 378,038 ± 2,429
ny.202006 197,883 11,741 ± 170 349,932 ± 4,375

3.8.3 Quick Start

Data Preparation

To start the simulation of Citi Bike scenario, users have two options for the data preparation:

• If the topology data is not generated in advance, the system will automatically download and process the relevant
data when the environment is created. The data will be stored in a temporary folder and be automatically deleted
after the experiment.

• Before creating the environment, users can also manually download and generate relevant data. This approach
will save you a lot of time if you need to conduct several experiments on the same topology. Therefore, we
encourage you to generate the relevant data manually first.

The following is the introduction to related commands:

Environment List Command

The data environment list command is used to list the environments that need the data files generated before the
simulation.

maro env data list

scenario: citi_bike, topology: ny.201801
scenario: citi_bike, topology: ny.201802
scenario: citi_bike, topology: ny.201803
scenario: citi_bike, topology: ny.201804
scenario: citi_bike, topology: ny.201805
scenario: citi_bike, topology: ny.201806
...

Generate Command

The data generate command is used to automatically download and build the specified predefined scenario and
topology data files for the simulation. Currently, there are three arguments for the data generate command:

• -s: required, used to specify the predefined scenario. Valid scenarios are listed in the result of environment list
command.

• -t: required, used to specify the predefined topology. Valid topologies are listed in the result of environment
list command.

• -f: optional, if set, to force to re-download and re-generate the data files and overwrite the already existing
ones.

32 Chapter 3. Contents

maro

maro env data generate -s citi_bike -t ny.201802

The data files for citi_bike-ny201802 will then be downloaded and deployed to ~/.maro/
→˓data/citibike/_build/ny201802.

For the example above, the directory structure should be like:

|-- ~/.maro
|-- data
| |-- citi_bike
| |-- .build # bin data file
| |-- [topology] # topology
| |-- .source
| |-- .download # original data file
| |-- .clean # cleaned data file
|-- temp # download temp file

Build Command

The data build command is used to build the CSV data files to binary data files that the simulator needs. Currently,
there are three arguments for the data build command:

• --meta: required, used to specify the path of the meta file. The source columns that to be converted and the
data type of each columns should be specified in the meta file.

• --file: required, used to specify the path of the source CSV data file(s). If multiple source CSV data files are
needed, you can list all the full paths of the source files in a specific file and use a @ symbol to specify it.

• --output: required, used to specify the path of the target binary file.

maro data build --meta ~/.maro/data/citibike/meta/trips.yml --file ~/.maro/data/
→˓citibike/source/_clean/ny201801/trip.csv --output ~/.maro/data/citibike/_build/
→˓ny201801/trip.bin

Environment Interface

Before starting interaction with the environment, we need to know the definition of DecisionEvent and Action
in Citi Bike scenario first. Besides, you can query the environment snapshot list to get more detailed information for
the decision making.

DecisionEvent

Once the environment need the agent’s response to reposition bikes, it will throw an DecisionEvent. In the
scenario of Citi Bike, the information of each DecisionEvent is listed as below:

• station_idx (int): The id of the station/agent that needs to respond to the environment.

• tick (int): The corresponding tick.

• frame_index (int): The corresponding frame index, that is the index of the corresponding snapshot in the
environment snapshot list.

• type (DecisionType): The decision type of this decision event. In Citi Bike scenario, there are 2 types:

– Supply indicates there is too many bikes in the corresponding station, so it is better to reposition some
of them to other stations.

3.8. Bike Repositioning (Citi Bike) 33

../key_components/data_model.html#advanced-features

maro

– Demand indicates there is no enough bikes in the corresponding station, so it is better to reposition bikes
from other stations.

• action_scope (dict): A dictionary that maintains the information for calculating the valid action scope:

– The key of these item indicate the station/agent ids.

– The meaning of the value differs for different decision type:

* If the decision type is Supply, the value of the station itself means its bike inventory at that moment,
while the value of other target stations means the number of their empty docks.

* If the decision type is Demand, the value of the station itself means the number of its empty docks,
while the value of other target stations means their bike inventory.

Action

Once we get a DecisionEvent from the environment, we should respond with an Action. Valid Action could
be:

• None, which means do nothing.

• A valid Action instance, including:

– from_station_idx (int): The id of the source station of the bike transportation.

– to_station_idx (int): The id of the destination station of the bike transportation.

– number (int): The quantity of the bike transportation.

Example

Here we will show you a simple example of interaction with the environment in random mode, we hope this could
help you learn how to use the environment interfaces:

from maro.simulator import Env
from maro.simulator.scenarios.citi_bike.common import Action, DecisionEvent,
→˓DecisionType

import random

Initialize an environment of Citi Bike scenario, with a specific topology.
In CitiBike, 1 tick means 1 minute, durations=1440 here indicates a length of 1 day.
In CitiBike, one snapshot will be maintained every snapshot_resolution ticks,
snapshot_resolution=30 here indicates 1 snapshot per 30 minutes.
env = Env(scenario="citi_bike", topology="toy.3s_4t", start_tick=0, durations=1440,
→˓snapshot_resolution=30)

Query for the environment summary, the business instances and intra-instance
→˓attributes
will be listed in the output for your reference.
print(env.summary)

metrics: object = None
decision_event: DecisionEvent = None
is_done: bool = False
action: Action = None

num_episode = 2
(continues on next page)

34 Chapter 3. Contents

maro

(continued from previous page)

for ep in range(num_episode):
Gym-like step function.
metrics, decision_event, is_done = env.step(None)

while not is_done:
past_2hour_frames = [

x for x in range(decision_event.frame_index - 4, decision_event.frame_
→˓index)

]
decision_station_idx = decision_event.station_idx
intr_station_infos = ["trip_requirement", "bikes", "shortage"]

Query the snapshot list of this environment to get the information of
the trip requirements, bikes, shortage of the decision station in the past

→˓2 hours.
past_2hour_info = env.snapshot_list["stations"][

past_2hour_frames : decision_station_idx : intr_station_infos
]

if decision_event.type == DecisionType.Supply:
Supply: the value of the station itself means the bike inventory.
self_bike_inventory = decision_event.action_scope[decision_event.station_

→˓idx]
Supply: the value of other stations means the quantity of empty docks.
target_idx_dock_tuple_list = [

(k, v) for k, v in decision_event.action_scope.items() if k !=
→˓decision_event.station_idx

]
Randomly choose a target station weighted by the quantity of empty

→˓docks.
target_idx, target_dock = random.choices(

target_idx_dock_tuple_list,
weights=[item[1] for item in target_idx_dock_tuple_list],
k=1

)[0]
Generate the corresponding random Action.
action = Action(

from_station_idx=decision_event.station_idx,
to_station_idx=target_idx,
number=random.randint(0, min(self_bike_inventory, target_dock))

)

elif decision_event.type == DecisionType.Demand:
Demand: the value of the station itself means the quantity of empty

→˓docks.
self_available_dock = decision_event.action_scope[decision_event.station_

→˓idx]
Demand: the value of other stations means their bike inventory.
target_idx_inventory_tuple_list = [

(k, v) for k, v in decision_event.action_scope.items() if k !=
→˓decision_event.station_idx

]
Randomly choose a target station weighted by the bike inventory.
target_idx, target_inventory = random.choices(

target_idx_inventory_tuple_list,
weights=[item[1] for item in target_idx_inventory_tuple_list],
k=1

(continues on next page)

3.8. Bike Repositioning (Citi Bike) 35

maro

(continued from previous page)

)[0]
Generate the corresponding random Action.
action = Action(

from_station_idx=target_idx,
to_station_idx=decision_event.station_idx,
number=random.randint(0, min(self_available_dock, target_inventory))

)

else:
action = None

Drive the environment with the random action.
metrics, decision_event, is_done = env.step(action)

Query for the environment business metrics at the end of each episode,
it is usually users' optimized object (usually includes multi-target).
print(f"ep: {ep}, environment metrics: {env.metrics}")
env.reset()

Jump to this notebook for a quick experience.

3.8.4 Visualization

The resource holder in this scenario is the bike station. The number of epoches is varied based on selected strategy.
Currently, we generate result with Greedy Policy. Only one epoch is included in result. Thus, inter-epoch view would
not be displayed.

Inter-epoch view

This part display cross-epoch summary information. User could select the Start Epoch and End Epoch, as well as
Epoch Sampling Ratio. Since there is only one epoch, this part is hidden.

Intra-epoch view

Intra-view is divided into two dimensions according to time and space.

If user choose to view information by station, it means that attributes of all snapshots within a selected station would
be displayed. By changing the option “station index”, user could view data of different stations. By changing the
option “Snapshot Sampling Ratio”, Users can freely adjust the sampling rate. For example, if there are 100 snapshots
and user selected 0.3 as sampling ratio, 30 snapshots data would be selected to render the chart.

To be specific, the line chart could be customized with operations in the following example.

By choosing the item “All”, all of attributes would be displayed. In addition, according to the data characteristics of
each scenario, users will be provided with the option to quickly select a set of data.

e.g. In this scenario, item “Requirement Info” refers to [trip_requirement, shortage, fulfillment].

Moreover, to improve the flexibility of visualizing data, user could use pre-defined formula and selected attributes to
generate new attributes. Generated attributes would be treated in the same way as original attributes.

36 Chapter 3. Contents

https://github.com/microsoft/maro/tree/master/notebooks/bike_repositioning/interact_with_environment.ipynb

maro

If user choose to view information by snapshot, it means attributes of all stations within a selected snapshot would
be displayed. By changing option “snapshot index”, user could view data of different snapshot. By changing option
“Station Sampling Ratio”, user could change the number of sampled data.

Particularly, if user want to check the name of a specific station, just hovering on the according bar.

3.9 Virtual Machine Scheduling (VM Scheduling)

In 21th century, the business needs of cloud computing are dramatically increasing. During the cloud service, users
request Virtual Machine (VM) with a certain amount of resources (eg. CPU, memory, etc). The following important
issue is how to allocate the physical resources for these VMs? The VM Scheduling scenario aims to find a better
solution of the VM scheduling problem in cloud data centers. Now, consider a specific time, the number of VM
requests and arrival pattern is fixed. Given a cluster of limited physical machines(PM) with limited physical resources,
different VM allocation strategies result in different amount of successful completion and different operating cost of
the data center. For cloud providers, a good VM allocation strategy can maximize the resource utilization and thus can
increase the profit by providing more VMs to users. For cloud users, a good VM allocation strategy can minimize the
VM response time and have a better using experience. We hope this scenario can meet the real needs and provide you
with a demand simulation that is closest to the real situation.

3.9.1 Resource Flow

In this scenario, the physical resources in each PM are the central resource, which currently includes the physical cores
and memory. A full resource life cycle always contains the steps below:

• Coming VM requests ask for a certain amount of resources. Resource requirements are varied based on the
different VM requests.

• Based on the scheduling agent’s strategy, the VM will be allocated to and be created in a specified PM as long
as that PM’s remaining resources are enough.

• The VM’s resource utilization changes dynamically and the PM’s real-time energy consumption will be simu-
lated in the runtime simulation.

• After a period of execution, the VM completes its tasks. The simulator will release the resources allocated to
this VM and deallocate this VM from the PM. Finally, the resource is free and is ready to serve the next VM
request.

VM Request

In the VM scheduling scenario, the VM requests are uniformly sampled from real workloads. As long as the original
dataset is large enough and the sample ratio is not too small, the sampled VM requests can follow a similar distribution
to the original ones.

Given a fixed time interval, a VM request will arise according to the real VM workload data. The request contains
the VM information, such as the subscription id, the deployment id, and the VM category, VM’s required resources,
including the required CPU cores and the required memory, and the remaining buffer time.

• Whenever receive a VM request, the MARO simulator will first calculate the remaining resources of each PM,
filtering out the valid PMs (valid PMs means that the remaining resources of PM are enough for the required
resources of the VM).

• Then, the simulator delivers all valid PMs and the required resources of the awaiting VM to the VM scheduler
(agent) for a decision.

3.9. Virtual Machine Scheduling (VM Scheduling) 37

maro

We have two categories of VM. One is interactive, and the other one is delay-insensitive.

• Interactive: The interactive VMs usually require low response time, so we set this kind of VMs can only be
allocated to the non-oversubscribable PM server.

• Delay-insensitive: The delay-insensitive VMs usually serve for batch-tasks or development workload. This kind
of VMs can be allocated to the over-subscribable PM server.

VM Allocation

Based on the valid PM list, the historical information recorded by the simulator, and the detailed required resources of
the VM, the VM scheduler (decision agent) will make the decision according to its allocation strategy.

There are two types of meaningful actions:

• Deliver a valid PM ID to the simulator.

• Postpone the VM request, which will leave this request to be handled later if the remaining buffer time is enough.

See the detailed attributes of Action.

Oversubscription

To maximize each PM’s utilization, cloud providers will oversubscribe the physical resource. Considering the various
service level, the physical machines are then divided into the over-subscribable ones and non-oversubscribable ones.
For the over-subscription, there are several parameters can be set in the config.yml. In our scenario, there are two
resources could be oversubscribed, CPU and memory, so we have two maximum oversubscription rate can be set.

• MAX_CPU_OVERSUBSCRIPTION_RATE: The oversubscription rate of CPU. For example, the default setting
is 1.15, that means each PM can be allocated at most 1.15 times of its resource capacity.

• MAX_MEM_OVERSUBSCRIPTION_RATE: The oversubscription rate of memory. Similar to the CPU rate.

To protect the PM from the overloading, we need to consider the CPU utilization. The MAX_UTILIZATION_RATE
is used as the security mechanism, that can be set in the config.yml.

• MAX_UTILIZATION_RATE: The default setting is 1, which means that when filtering the valid PMs, the
maximum allowed physical CPU utilization is 100%.

Runtime Simulation

Dynamic Utilization

To make the simulated environment closest to the real situation. We also simulate the resource utilization (currently
only CPU utilization) of each VM. The CPU utilization of the VM varies every tick based on the real VM workload
readings. We will also regularly update the real-time resource utilization of each PM based on the live VMs in it.

38 Chapter 3. Contents

maro

Real-time Energy Consumption

One of the most important characteristics that cloud providers concern is the energy consumption of the data center.
The different VM allocation can result in different energy consumption of the PM cluster, we also simulate the energy
usage based on the CPU utilization.

Energy Curve

As we mention before, the lower energy consumption of the PMs, the lower cost to maintain the physical servers. In
our simulation, we currently use a non-linear energy curve like the one in the above figure to simulate the energy based
on the CPU utilization.

Overload

Since the VM’s CPU utilization varies along the time, when enabling the oversubscription, it might happen that the
sum of VM’s CPU usage exceed the capacity of the physical resource. This situation called overload.

Overloading may lead to VM’s performance degradation or service level agreements (SLAs) violations in real pro-
duction (We will support these features in the future). Currently, for the situation of overloading, we only support
quiescing (killing) all VMs or just recording the times of overloading, which can also be set in config.yml.

• KILL_ALL_VMS_IF_OVERLOAD: If this action is enable, once overloading happens, all VMs located at the
overloading PMs will be deallocated. To consider the effect of overloading, we will still count the energy
consumed by the high utilization. The impact of the quiescing action on the PM’s utilization will be reflected in
the next tick.

No matter enable killing all VMs or not, we will calculate the number of overload PMs and the number of overload
VMs. These two metrics are cumulative values and will be recorded as the environment metrics.

VM Deallocation

The MARO simulator regularly checks the finished VMs in every tick. A finished VM means that it goes through a
complete life cycle, is ready to be terminated, and the resources it occupies will be available again in the end. The
simulator will then release the finished VM’s resources, and finally remove the VM from the PM.

3.9.2 Topologies

Azure Topologies

The original data comes from Azure public dataset. The dataset contains real Azure VM workloads, including the
information of VMs and their utilization readings in 2019 lasting for 30 days. Total number of VM recorded is
2,695,548.

In our scenario, we pre-processed the AzurePublicDatasetV2. The detailed information of the data schema can be
found here. After pre-processed, the data contains

• Renumbered VM ID

• VM cores and memory(GB) requirements

• Real VM creation and deletion time (converted to the tick, 1 tick means 5 minutes in real time)

3.9. Virtual Machine Scheduling (VM Scheduling) 39

../images/scenario/vm.energy_curve.svg
https://dl.acm.org/doi/10.1145/1273440.1250665
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetV2.md

maro

As for the utilization readings part, we sort the renumbered VM ID and CPU utilization pairs by the timestamp (tick).

To provide system workloads from light to heavy, two kinds of simple topologies are designed and provided in VM
Scheduling scenario.

azure.2019.10k

Uniformly random sample.

• Total number of VMs: 10,000

• Average number of concurrent VMs: 835.7

• Average number of CPU cores requested: 3.8

• Average memory requested: 15.9 GB

• Average CPU utilization: 15.7 %

PM setting (Given by the /[topologies]/config.yml):

• Amount: 100

• CPU Cores: 32

• Memory: 128 GB

azure.2019.336k

Uniformly random sample.

• Total number of VMs: 336,000

• Average number of concurrent VMs: 28,305.9

• Average number of CPU cores requested: 3.8

• Average memory requested: 16.1 GB

• Average CPU utilization: 15.6 %

PM setting (Given by the /[topologies]/config.yml):

• Amount: 880

• CPU Cores: 16

• Memory: 112 GB

Naive Baseline

Belows are the final environment metrics of the method Random Allocation and Best-Fit Allocation in different
topologies. For each experiment, we setup the environment and test for a duration of 30 days. Besides, we use several
settings of PM capacity to test performance under different initial resources.

40 Chapter 3. Contents

maro

Random Allocation

Randomly allocate to a valid PM.

Topology PM Setting Total VM
Requests

Total Energy
Consumption

Successful
Allocation

Successful
completion

Failed Al-
location

Azure.2019.10k100 PMs, 32
Cores, 128 GB

10,000 2,430,651.6 9,850 9,030 150

100 PMs, 16
Cores, 112 GB

10,000 2,978,445.0 8,011 7,411 1,989

Azure.2019.336k880 PMs, 32
Cores, 128 GB

335,985 26,681,249.7 176,468 165,715 159,517

880 PMs, 16
Cores, 112 GB

335,985 26,367,238.7 92,885 87,153 243,100

Best-Fit Allocation

Choose the valid PM with the least remaining resources (only consider CPU cores here).

Topology PM Setting Total VM
Requests

Total Energy
Consumption

Successful
Allocation

Successful
completion

Failed Al-
location

Azure.2019.10k100 PMs, 32
Cores, 128 GB

10,000 2,395,328.7 10,000 9,180 0

100 PMs, 16
Cores, 112 GB

10,000 2,987,086.6 7,917 7,313 2,083

Azure.2019.336k880 PMs, 32
Cores, 128 GB

335,985 26,695,470.8 171,044 160,495 164,941

880 PMs, 16
Cores, 112 GB

335,985 26,390,972.9 92,263 86,600 243,722

3.9.3 Quick Start

Data Preparation

When the environment is first created, the system will automatically trigger the pipeline to download and process the
data files. Afterwards, if you want to run multiple simulations, the system will detect whether the processed data files
exist or not. If not, it will then trigger the pipeline again. Otherwise, the system will reuse the processed data files.

Customize Dataset

If you want to use your own dataset, you need to prepare two csv files, vm_table and cpu_readings_file.
Below is the data schema and the format that you need to follow.

• vm_table:

– vm_id: int. The id number of VMs.

– sub_id: int. The subscription id of VMs.

– deploy_id: int. The deployment id of VMs.

– timestamp: int. The timestamp of VM’s creation time.

3.9. Virtual Machine Scheduling (VM Scheduling) 41

maro

– vm_lifetime: int. The lifetime of VMs. Lifetime equals the deletion time - creation time (timestamp) + 1.

– vm_deleted: int. The timestamp of VM’s deletion time.

– vm_category: int. The category of VMs. Currently, we have three categories of VM:

* Delay-Insensitive: The VMs workload that could be delayed, such as batch tasks or test work-
load. This kind of VMs could be allocated to the over-subscribable PM. Store as 0.

* Interactive: The VMs workload that are interactive, which need user response in time. This kind
of VMs could only allocated to the non-oversubscribable PMs. Store as 1.

* Unknown. Unknown types. To avoid the overloading, this kind of VMs are treated as the interactive
ones, which could only allocated to the non-oversubscribable PMs. Store as 2.

– vm_cpu_cores: int. The CPU cores of VMs.

– vm_memory: int. The memory of VMs.

• cpu_readings_file:

– timestamp: int. The timestamp. Should be matched with the timestamp in vm_table.

– vm_id: int. The id number of VMs. Should be matched with the ids in vm_table.

– cpu_utilization: float. The utilization of VM CPU. Store in the unit of percentage (%).

Build Command

After preparing two files as the above formats. You need to convert them to binary files. We provide the build
command to build your own CSV dataset to binary files that the MARO simulator can use. Currently, there are three
required arguments for the data build command:

• --meta: required, used to specify the path of the meta file. In default, the meta files are under

~/.maro/data/vm_scheduling/meta/

The source columns that to be converted and the data type of each columns should be specified in the meta file.

• --file: required, used to specify the path of the source CSV data file(s). If multiple source CSV data files are
needed, you can list all the full paths of the source files in a specific file and use a @ symbol to specify it.

• --output: required, used to specify the path of the target binary file.

maro data build --meta $PATH_TO_META_FILE --file $PATH_TO_CSV_FILE --output $PATH_TO_
→˓OUTPUT_FILE

For example,

maro data build --meta ~/.maro/data/vm_scheduling/meta/vmtable.yml --file ~/.maro/
→˓data/vm_scheduling/.build/azure.2019.10k/vmtable.bin --output $PWD/vmtable.bin

After building the binary files. Specify the direct path of VM_TABLE and CPU_READINGS in the config.yml under
the topologies directories. Then you can use your own dataset to run the simulation.

42 Chapter 3. Contents

maro

Environment Interface

Before starting interaction with the environment, we need to know the definition of DecisionPayload and
Action in VM Scheduling scenario first. Besides, you can query the environment snapshot list to get more detailed
information for the decision making.

DecisionPayload

Once the environment need the agent’s response to promote the simulation, it will throw an PendingDecision
event with the DecisionPayload. In the scenario of VM Scheduling, the information of DecisionPayload is
listed as below:

• valid_pms (List[int]): The list of the PM ID that is considered as valid (Its CPU and memory resource is enough
for the incoming VM request).

• vm_id (int): The VM ID of the incoming VM request (VM request that is waiting for the allocation).

• vm_cpu_cores_requirement (int): The CPU cores that is requested by the incoming VM request.

• vm_memory_requirement (int): The memory resource that is requested by the incoming VM request.

• remaining_buffer_time (int): The remaining buffer time for the VM allocation. The VM request will be treated
as failed when the remaining_buffer_time is spent. The initial buffer time budget can be set in the config.yml.

Action

Once get a PendingDecision event from the environment, the agent should respond with an Action. Valid
Action includes:

• None. It means do nothing but ignore this VM request.

• AllocateAction: If the MARO simulator receives the AllocateAction, the VM’s creation time will be
fixed at the tick it receives. Besides, the simulator will update the workloads (the workloads include CPU cores,
the memory, and the energy consumption) of the target PM. The AllocateAction includes:

– vm_id (int): The ID of the VM that is waiting for the allocation.

– pm_id (int): The ID of the PM where the VM is scheduled to allocate to.

• PostponeAction: If the MARO simulator receives the PostponeAction, it will calculate the remaining
buffer time.

– If the time is still enough, the simulator will re-generate a new request event and insert it to the corre-
sponding tick (based on the Postpone Step and DELAY_DURATION). The DecisionPayload of
the new requirement event only differs in the remaining buffer time from the old ones.

– If the time is exhausted, the simulator will note it as a failed allocation.

The PostponeAction includes:

– vm_id (int): The ID of the VM that is waiting for the allocation.

– postpone_step (int): The number of times that the allocation to be postponed. The unit is
DELAY_DURATION. 1 means delay 1 DELAY_DURATION, which can be set in the config.yml.

3.9. Virtual Machine Scheduling (VM Scheduling) 43

../key_components/data_model.html#advanced-features

maro

Example

Here we will show you a simple example of interaction with the environment in random mode, we hope this could
help you learn how to use the environment interfaces:

import random

from maro.simulator import Env
from maro.simulator.scenarios.vm_scheduling import AllocateAction, DecisionPayload,
→˓PostponeAction

Initialize an Env for vm_scheduling scenario
env = Env(

scenario="vm_scheduling",
topology="azure.2019.10k",
start_tick=0,
durations=8638,
snapshot_resolution=1

)

metrics: object = None
decision_event: DecisionPayload = None
is_done: bool = False
action: AllocateAction = None

Start the env with a None Action
metrics, decision_event, is_done = env.step(None)

while not is_done:
valid_pm_num: int = len(decision_event.valid_pms)
if valid_pm_num <= 0:

No valid PM now, postpone.
action: PostponeAction = PostponeAction(

vm_id=decision_event.vm_id,
postpone_step=1

)
else:

Randomly choose an available PM.
random_idx = random.randint(0, valid_pm_num - 1)
pm_id = decision_event.valid_pms[random_idx]
action: AllocateAction = AllocateAction(

vm_id=decision_event.vm_id,
pm_id=pm_id

)
metrics, decision_event, is_done = env.step(action)

print(f"[Random] Topology: azure.2019.10k. Total ticks: 8638. Start tick: 0")
print(metrics)

Jump to this notebook for a quick experience.

44 Chapter 3. Contents

https://github.com/microsoft/maro/tree/master/notebooks/vm_scheduling/interact_with_environment.ipynb

maro

3.10 Command support for scenarios

After installation, MARO provides a command that generate project for user, make it much easier to use or customize
scenario.

maro project new

This command will show a step-by-step wizard to create a new project under current folder. Currently it supports 2
modes.

3.10.1 1. Use built-in scenarios

To use built-in scenarios, please agree the first option “Use built-in scenario” with “yes” or “y”, default is “yes”. Then
you can select a built-in scenario and topologies with auto-completing.

Use built-in scenario?yes
Scenario name:cim
Use built-in topology (configuration)?yes
Topology name to use:global_trade.22p_l0.0
Durations to emulate:1024
Number of episodes to emulate:500
{'durations': 1024,
'scenario': 'cim',
'topology': 'global_trade.22p_l0.0',
'total_episodes': 500,
'use_builtin_scenario': True,
'use_builtin_topology': True}

Is this OK?yes

If these settings correct, then this command will create a runner.py script, you can just run with:

python runner.py

This script contains minimal code to interactive with environment without any action, you can then extend it as you
wish.

Also you can create you own topology (configuration) if you say “no” for options “Use built-in topology (configura-
tion)?”. It will ask you for a name of new topology, then copy the content from built-in one into your working folder
(topologies/your_topology_name/config.yml).

3.10.2 2. Customized scenario

This mode is used to generate a template of customize scenario for you instead of writing it from scratch. To enable
this, say “no” for option “Use built-in scenario”, then provide your scenario name, default is current folder name.

Use built-in scenario?no
New scenario name:my_test
New topology name:my_test
Durations to emulate:1000
Number of episodes to emulate:100
{'durations': 1000,
'scenario': 'my_test',
'topology': 'my_test',

(continues on next page)

3.10. Command support for scenarios 45

maro

(continued from previous page)

'total_episodes': 100,
'use_builtin_scenario': False,
'use_builtin_topology': False}

Is this OK?yes

This will generate following files like below:

-- runner.py
-- scenario

-- business_engine.py
-- common.py
-- events.py
-- frame_builder.py
-- topologies

-- my_test
-- config.yml

The script “runner.py” is the entry of this project, it will interactive with your scenario without action. Then you can
fill “scenario/business_engine.py” with your own logic.

3.11 Greedy Policy for Citi Bike

In this example we demonstrate using a simple greedy policy for Citi Bike, which is a real-world bike repositioning
scenario.

3.11.1 Greedy Policy

Our greedy policy is simple: if the event type is supply, the policy will make the current station send as many bikes as
possible to one of k stations with the most empty docks. If the event type is demand, the policy will make the current
station request as many bikes as possible from one of k stations with the most bikes. We use a heap data structure to
find the top k supply/demand candidates from the action scope associated with each decision event.

class GreedyPolicy:
...
def choose_action(self, decision_event: DecisionEvent):

if decision_event.type == DecisionType.Supply:
"""
Find k target stations with the most empty slots, randomly choose one of

→˓them and send as many bikes to
it as allowed by the action scope
"""
top_k_demands = []
for demand_candidate, available_docks in decision_event.action_scope.

→˓items():
if demand_candidate == decision_event.station_idx:

continue

heapq.heappush(top_k_demands, (available_docks, demand_candidate))
if len(top_k_demands) > self._demand_top_k:

heapq.heappop(top_k_demands)

max_reposition, target_station_idx = random.choice(top_k_demands)
(continues on next page)

46 Chapter 3. Contents

https://maro.readthedocs.io/en/latest/scenarios/citi_bike.html

maro

(continued from previous page)

action = Action(decision_event.station_idx, target_station_idx, max_
→˓reposition)

else:
"""
Find k source stations with the most bikes, randomly choose one of them

→˓and request as many bikes from
it as allowed by the action scope.
"""
top_k_supplies = []
for supply_candidate, available_bikes in decision_event.action_scope.

→˓items():
if supply_candidate == decision_event.station_idx:

continue

heapq.heappush(top_k_supplies, (available_bikes, supply_candidate))
if len(top_k_supplies) > self._supply_top_k:

heapq.heappop(top_k_supplies)

max_reposition, source_idx = random.choice(top_k_supplies)
action = Action(source_idx, decision_event.station_idx, max_reposition)

return action

3.11.2 Interaction with the Greedy Policy

This environment is driven by real trip history data from Citi Bike.

env = Env(scenario=config.env.scenario, topology=config.env.topology, start_
→˓tick=config.env.start_tick,

durations=config.env.durations, snapshot_resolution=config.env.resolution)

if config.env.seed is not None:
env.set_seed(config.env.seed)

policy = GreedyPolicy(config.agent.supply_top_k, config.agent.demand_top_k)
metrics, decision_event, done = env.step(None)
while not done:

metrics, decision_event, done = env.step(policy.choose_action(decision_event))

env.reset()

Note: All related code snippets are supported in maro playground.

3.11. Greedy Policy for Citi Bike 47

https://s3.amazonaws.com/tripdata/index.html
https://hub.docker.com/r/maro2020/playground

maro

3.12 Simulation Toolkit

MARO simulation toolkit provides some predefined environments, such as CIM, Citi Bike, etc. It also provides some
critical and reusable wheels for easily building new scenarios, with a high-performance guarantee and uniformed
programming paradigm, including Data Model, Event Buffer, and Business Engine.

3.12.1 Overview

The key features of MARO simulation toolkit:

• Event-driven, which is friendly to business logging data, and more in line with real-world scenarios;

• High execution performance;

• Low development cost for new environments;

• Convenient interface for spatial-temporal data accessing, which is friendly to decision-related information
querying.

In order to achieve the key features listed above, we choose Python as the frontend language. In the meantime, to
avoid Python GIL problem and to achieve the better performance of memory allocation and cache hitting, we choose
Cython as the backend language. Furthermore, we provide a declarative Data Model to auto-generate the related data
class wrapper for easy underlying memory access, a Snapshot List slicing interface to quickly accessing data from the
spatial-temporal and intra-node perspective. Considering the variously complex scenarios, we decide to build up an
event-oriented simulation system, which is not only suitable to feed existing business logging data but also convenient
to inject random events. New scenarios can be implemented in the pluggable Business Engine based on the Event
Buffer supporting. The following figure illustrates the overall architecture of the MARO simulation system.

3.12.2 Environment

Well-designed topologies are provided in each predefined scenario (i.e. CIM, Citi Bike). You can specify both the
scenario and the topology when initializing an environment. To distinguish the complicated problems in the real world,
we provide various topologies with different difficulties for the user to do a step-by-step exploration. In general,
the interface of environments is Gym-like, which use step to trigger the environment to apply actions from
agent(s). Furthermore, we concern more about the decision mode of multi-agent/hierarchical-agent and how to
conveniently query data on the levels of spatial, temporal, and intra-node (resource holder). The following shows a
typical environment interaction workflow and code snippet.

from maro.simulator import Env
from maro.simulator.scenarios.cim.common import Action

Initialize an environment with a specific scenario, related topology.
In Container Inventory Management, 1 tick means 1 day, here durations=100 means a
→˓length of 100 days
env = Env(scenario="cim", topology="toy.5p_ssddd_l0.0", start_tick=0, durations=100)

Query environment summary, which includes business instances, intra-instance
→˓attributes, etc.
print(env.summary)

for ep in range(2):
Gym-like step function.

(continues on next page)

48 Chapter 3. Contents

../scenarios/container_inventory_management.html
../scenarios/citi_bike.html
./data_model.html
./event_buffer.html
./business_engine.html
https://wiki.python.org/moin/GlobalInterpreterLock
https://cython.org/
./data_model.html
./data_model.html#advanced-features
./business_engine.html
./event_buffer.html
./event_buffer.html
../images/simulator/overview.svg
../scenarios/container_inventory_management.html
../scenarios/citi_bike.html
https://gym.openai.com/
../images/simulator/interaction_workflow.svg

maro

(continued from previous page)

metrics, decision_event, is_done = env.step(None)

while not is_done:
past_week_ticks = [

x for x in range(decision_event.tick - 7, decision_event.tick)
]
decision_port_idx = decision_event.port_idx
intr_port_infos = ["booking", "empty", "shortage"]

Query the snapshot list of the environment to get the information of
the booking, empty container inventory, shortage of the decision port in

→˓the past week.
past_week_info = env.snapshot_list["ports"][

past_week_ticks : decision_port_idx : intr_port_infos
]

dummy_action = Action(
vessel_idx=decision_event.vessel_idx,
port_idx=decision_event.port_idx,
quantity=0

)

Drive environment with dummy action (no repositioning).
metrics, decision_event, is_done = env.step(dummy_action)

Query environment business metrics at the end of an episode,
it is your optimized object (usually includes multi-target).
print(f"ep: {ep}, environment metrics: {env.metrics}")
env.reset()

3.12.3 Critical Components

These components are the foundation of the whole MARO simulation system and can be easily reused to build up
various real-world business scenarios with good performance and uniformed pattern. You can find more details in
Data Model, Event Buffer, and Business Engine.

3.13 Data Model

The data model of MARO provides a declarative interface. We choose Python as the frontend language for saving
development cost, and we take C as the backend language for improving the execution reference. What’s more, the
backend store is a pluggable design, user can choose different backend implementation based on their real performance
requirement and device limitation.

Currently there are two data model backend implementation: static and dynamic. Static implementation used Numpy
as its data store, do not support dynamic attribute length, the advance of this version is that its memory size is same as
its declaration. Dynamic implementation is hand-craft c++. It supports dynamic attribute (list) which will take more
memory than the static implementation but is faster for querying snapshot states and accessing attributes.

3.13. Data Model 49

./data_model.html
./event_buffer.html
./business_engine.html

maro

3.13.1 Key Concepts

As shown in the figure above, there are some key concepts in the data model:

• Node is the abstraction of the resource holder, which is usually the major business instance of the scenario (i.e.
vessels and ports in CIM scenario). A node usually has various attributes to present the business nature.

• (Slot) Attribute is the abstraction of business properties for the scenarios-specific resource holder (node). The
attributes of a node could be declared as different data types based on the real requirements. Furthermore, for
each attribute, a slot feature is provided to support the fixed-size array. The slot number can indicate the
attribute values (e.g. the three different container types in CIM scenario) or the detailed categories (e.g. the
ten specific products in the Use Case below). By default, the slot value is one. As for the dynamic backend
implementation, an attribute can be marked as is_list or is_const to identify it is a list attribute or a const attribute
respectively. A list attribute’s default slot number is 0, and can be increased as demand, max number is 2^32. A
const attribute is designed for the value that will not change after initialization, e.g. the capacity of a port/station.
The value is shared between frames and will not be copied when taking a snapshot.

• Frame is the collection of all nodes in the environment. The historical frames present the aggregated state of
the environment during a specific period, while the current frame hosts the latest state of the environment at the
current time point.

• Snapshot List is the dumped frames based on a pre-defined resolution. It captures the aggregated changes of
the environment between the dump points.

3.13.2 Use Case

• Below is the declaration of a retail frame, which includes warehouse and store nodes.

from maro.backends.backend import AttributeType
from maro.backends.frame import node, NodeAttribute, NodeBase, FrameNode,
→˓FrameBase

TOTAL_PRODUCT_CATEGORIES = 10
TOTAL_STORES = 8
TOTAL_WAREHOUSES = 2
TOTAL_SNAPSHOT = 100

@node("warehouse")
class Warehouse(NodeBase):

inventories = NodeAttribute(AttributeType.Int, TOTAL_PRODUCT_CATEGORIES)
shortages = NodeAttribute(AttributeType.Int, TOTAL_PRODUCT_CATEGORIES)

def __init__(self):
self._init_inventories = [100 * (i + 1) for i in range(TOTAL_PRODUCT_

→˓CATEGORIES)]
self._init_shortages = [0] * TOTAL_PRODUCT_CATEGORIES

def reset(self):
self.inventories[:] = self._init_inventories
self.shortages[:] = self._init_shortages

@node("store")
class Store(NodeBase):

(continues on next page)

50 Chapter 3. Contents

../images/simulator/key_concepts.svg

maro

(continued from previous page)

inventories = NodeAttribute(AttributeType.Int, TOTAL_PRODUCT_CATEGORIES)
shortages = NodeAttribute(AttributeType.Int, TOTAL_PRODUCT_CATEGORIES)
sales = NodeAttribute(AttributeType.Int, TOTAL_PRODUCT_CATEGORIES)

def __init__(self):
self._init_inventories = [10 * (i + 1) for i in range(TOTAL_PRODUCT_

→˓CATEGORIES)]
self._init_shortages = [0] * TOTAL_PRODUCT_CATEGORIES
self._init_sales = [0] * TOTAL_PRODUCT_CATEGORIES

def reset(self):
self.inventories[:] = self._init_inventories
self.shortages[:] = self._init_shortages
self.sales[:] = self._init_sales

class RetailFrame(FrameBase):
warehouses = FrameNode(Warehouse, TOTAL_WAREHOUSES)
stores = FrameNode(Store, TOTAL_STORES)

def __init__(self):
If your actual frame number was more than the total snapshot number,

→˓the old snapshots would be rolling replaced.
You can select a backend implementation that will fit your requirement.
super().__init__(enable_snapshot=True, total_snapshot=TOTAL_SNAPSHOT,

→˓backend_name="static/dynamic")

• The operations on the retail frame.

retail_frame = RetailFrame()

Fulfill the initialization values to the backend memory.
for store in retail_frame.stores:

store.reset()

Fulfill the initialization values to the backend memory.
for warehouse in retail_frame.warehouses:

warehouse.reset()

Take a snapshot of the first tick frame.
retail_frame.take_snapshot(0)
snapshot_list = retail_frame.snapshots
print(f"Max snapshot list capacity: {len(snapshot_list)}")

Query sales, inventory information of all stores at first tick, len(snapshot_
→˓list["store"]) equals to TOTAL_STORES.
all_stores_info = snapshot_list["store"][0::["sales", "inventories"]].
→˓reshape(TOTAL_STORES, -1)
print(f"All stores information at first tick (numpy array): {all_stores_info}")

Query shortage information of first store at first tick.
first_store_shortage = snapshot_list["store"][0:0:"shortages"]
print(f"First store shortages at first tick (numpy array): {first_store_shortage}
→˓")

Query inventory information of all warehouses at first tick, len(snapshot_list[
→˓"warehouse"]) equals to TOTAL_WAREHOUSES.

(continues on next page)

3.13. Data Model 51

maro

(continued from previous page)

all_warehouses_info = snapshot_list["warehouse"][0::"inventories"].reshape(TOTAL_
→˓WAREHOUSES, -1)
print(f"All warehouses information at first tick (numpy array): {all_warehouses_
→˓info}")

Add fake shortages to first store.
retail_frame.stores[0].shortages[:] = [i + 1 for i in range(TOTAL_PRODUCT_
→˓CATEGORIES)]
retail_frame.take_snapshot(1)

Query shortage information of first and second store at first and second tick.
store_shortage_history = snapshot_list["store"][[0, 1]: [0, 1]: "shortages"].
→˓reshape(2, -1)
print(f"First and second store shortage history at the first and second tick
→˓(numpy array): {store_shortage_history}")

3.13.3 Supported Attribute Data Type

All supported data types for the attribute of the node:

Attribute Data Type C Type Range
Attribute.Byte char -128 .. 127
Attribute.UByte unsigned char 0 .. 255
Attribute.Short (i2) short -32,768 .. 32,767
Attribute.UShort unsigned short 0 .. 65,535
Attribute.Int (i4) int32_t -2,147,483,648 .. 2,147,483,647
Attribute.UInt (i4) uint32_t 0 .. 4,294,967,295
Attribute.Long (i8) int64_t -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807
Attribute.ULong (i8) uint64_t 0 .. 18,446,744,073,709,551,615
Attribute.Float (f) float -3.4E38 .. 3.4E38
Attribute.Double (d) double -1.7E308 .. 1.7E308

3.13.4 Advanced Features

For better data access, we also provide some advanced features, including:

• Attribute value change handler: It is a hook function for the value change event on a specific attribute.
The member function with the _on_{attribute_name}_changed naming pattern will be automatically
invoked when the related attribute value changed. Below is the example code:

from maro.backends.frame import node, NodeBase, NodeAttribute

@node("test_node")
class TestNode(NodeBase):

test_attribute = NodeAttribute("i")

def _on_test_attribute_changed(self, value: int):
pass

• Snapshot list slicing: It provides a slicing interface for querying temporal (frame), spatial (node), intra-node
(attribute) information. Both a single index and an index list are supported for querying specific frame(s),

52 Chapter 3. Contents

maro

node(s), and attribute(s), while the empty means querying all. The return value is a flattened 1-dimension
NumPy array, which aligns with the slicing order as below:

snapshot_list = env.snapshot_list

Get max size of snapshots (in memory).
print(f"Max snapshot size: {len(snapshot_list)}")

Get snapshots of a specific node type.
test_nodes_snapshots = snapshot_list["test_nodes"]

Get node instance amount.
print(f"Number of test_nodes in the frame: {len(test_nodes_snapshots)}")

Query one attribute on all frames and nodes.
states = test_nodes_snapshots[::"int_attribute"]

Query two attributes on all frames and nodes.
states = test_nodes_snapshots[::["int_attribute", "float_attribute"]]

Query one attribute on all frame and the first node.
states = test_nodes_snapshots[:0:"int_attribute"]

Query attribute by node index list.
states = test_nodes_snapshots[:[0, 1, 2]:"int_attribute"]

Query one attribute on the first frame and the first node.
states = test_nodes_snapshots[0:0:"int_attribute"]

Query attribute by frame index list.
states = test_nodes_snapshots[[0, 1, 2]: 0: "int_attribute"]

The querying states is different between static and dynamic implementation
Static implementation will return a 1-dim numpy array, as the shape is known
→˓according to the parameters.
Dynamic implementation will return a 4-dim numpy array, that shape is (ticks,
→˓node_indices, attributes, slots).
Usually we can just flatten the state from dynamic implementation, then it will
→˓be same as static implementation,
except for list attributes.
List attribute only support one tick, one node index and one attribute name to
→˓query, cannot mix with normal attributes
states = test_nodes_snapshots[0: 0: "list_attribute"]

Also with dynamic implementation, we can get the const attributes which is
→˓shared between snapshot list, even without
any snapshot (need to provided one tick for padding).
states = test_nodes_snapshots[0: [0, 1]: ["const_attribute", "const_attribute_2"]]

3.13. Data Model 53

../images/simulator/snapshot_list_slicing.svg

maro

3.13.5 States in built-in scenarios’ snapshot list

Currently there are 3 ways to expose states in built-in scenarios:

Summary

Summary(env.summary) is used to expose static states to outside, it provide 3 items by default: node_mapping,
node_detail and event payload.

The “node_mapping” item usually contains node name and related index, but the structure may be different for differ-
ent scenario.

The “node_detail” usually used to expose node definitions, like node name, attribute name and slot number, this is
useful if you want to know what attributes are support for a scenario.

The “event_payload” used show that payload attributes of event in scenario, like “RETURN_FULL” event in CIM
scenario, it contains “src_port_idx”, “dest_port_idx” and “quantity”.

Metrics

Metrics(env.metrics) is designed that used to expose raw states of reward since we have removed reward support in
v0.2 version, and it also can be used to export states that not supported by snapshot list, like dictionary or complex
structures. Currently there are 2 ways to get the metrics from environment: env.metrics, or 1st result from env.step.

This metrics usually is a dictionary with several keys, but this is determined by business engine.

Snapshot_list

Snapshot list is the history of nodes (or data model) for a scenario, it only support numberic data types now. It
supported slicing query with a numpy array, so it support batch operations, make it much faster than using raw python
objects.

Nodes and attributes may different for different scenarios, following we will introduce about those in built-in scenarios.

NOTE: Per tick state means that the attribute value will be reset to 0 after each step.

3.13.6 CIM

Default settings for snapshot list

Snapshot resolution: 1

Max snapshot number: same as durations

54 Chapter 3. Contents

maro

Nodes and attributes in scenario

In CIM scenario, there are 3 node types:

port

capacity

type: int slots: 1

The capacity of port for stocking containers.

empty

type: int slots: 1

Empty container volume on the port.

full

type: int slots: 1

Laden container volume on the port.

on_shipper

type: int slots: 1

Empty containers, which are released to the shipper.

on_consignee

type: int slots: 1

Laden containers, which are delivered to the consignee.

shortage

type: int slots: 1

Per tick state. Shortage of empty container at current tick.

3.13. Data Model 55

maro

acc_storage

type: int slots: 1

Accumulated shortage number to the current tick.

booking

type: int slots: 1

Per tick state. Order booking number of a port at the current tick.

acc_booking

type: int slots: 1

Accumulated order booking number of a port to the current tick.

fulfillment

type: int slots: 1

Fulfilled order number of a port at the current tick.

acc_fulfillment

type: int slots: 1

Accumulated fulfilled order number of a port to the current tick.

transfer_cost

type: float slots: 1

Cost of transferring container, which also covers loading and discharging cost.

vessel

capacity

type: int slots: 1

The capacity of vessel for transferring containers.

NOTE: This attribute is ignored in current implementation.

56 Chapter 3. Contents

maro

empty

type: int slots: 1

Empty container volume on the vessel.

full

type: int slots: 1

Laden container volume on the vessel.

remaining_space

type: int slots: 1

Remaining space of the vessel.

early_discharge

type: int slots: 1

Discharged empty container number for loading laden containers.

route_idx

type: int slots: 1

Which route current vessel belongs to.

last_loc_idx

type: int slots: 1

Last stop port index in route, it is used to identify where is current vessel.

next_loc_idx

type: int slots: 1

Next stop port index in route, it is used to identify where is current vessel.

3.13. Data Model 57

maro

past_stop_list

type: int slots: dynamic

NOTE: This and following attribute are special, that its slot number is determined by configuration, but different with
a list attribute, its slot number is fixed at runtime.

Stop indices that we have stopped in the past.

past_stop_tick_list

type: int slots: dynamic

Ticks that we stopped at the port in the past.

future_stop_list

type: int slots: dynamic

Stop indices that we will stop in the future.

future_stop_tick_list

type: int slots: dynamic

Ticks that we will stop in the future.

matrices

Matrices node is used to store big matrix for ports, vessels and containers.

full_on_ports

type: int slots: port number * port number

Distribution of full from port to port.

full_on_vessels

type: int slots: vessel number * port number

Distribution of full from vessel to port.

58 Chapter 3. Contents

maro

vessel_plans

type: int slots: vessel number * port number

Planed route info for vessels.

How to

How to use the matrix(s)

Matrix is special that it only have one instance (index 0), and the value is saved as a flat 1 dim array, we can reshape it
after querying.

assuming that we want to use full_on_ports attribute.

tick = 0

we can get the instance number of a node by calling the len method
port_number = len(env.snapshot_list["port"])

this is a 1 dim numpy array
full_on_ports = env.snapshot_list["matrices"][tick::"full_on_ports"]

reshape it, then this is a 2 dim array that from port to port.
full_on_ports = full_on_ports.reshape(port_number, port_number)

3.13.7 Citi-Bike

Default settings for snapshot list

Snapshot resolution: 60

Max snapshot number: same as durations

Nodes and attributes in scenario

station

bikes

type: int slots: 1

How many bikes avaiable in current station.

3.13. Data Model 59

maro

shortage

type: int slots: 1

Per tick state. Lack number of bikes in current station.

trip_requirement

type: int slots: 1

Per tick states. How many requirements in current station.

fulfillment

type: int slots: 1

How many requirement is fit in current station.

capacity

type: int slots: 1

Max number of bikes this station can take.

id

type: int slots: 1

Id of current station.

weekday

type: short slots: 1

Weekday at current tick.

temperature

type: short slots: 1

Temperature at current tick.

60 Chapter 3. Contents

maro

weather

type: short slots: 1

Weather at current tick.

0: sunny, 1: rainy, 2: snowy 3: sleet.

holiday

type: short slots: 1

If it is holidy at current tick.

0: holiday, 1: not holiday

extra_cost

type: int slots: 1

Cost after we reach the capacity after executing action, we have to move extra bikes to other stations.

transfer_cost

type: int slots: 1

Cost to execute action to transfer bikes to other station.

failed_return

type: int slots: 1

Per tick state. How many bikes failed to return to current station.

min_bikes

type: int slots: 1

Min bikes number in a frame.

matrices

trips_adj

type: int slots: station number * station number

Used to store trip requirement number between 2 stations.

3.13. Data Model 61

maro

3.13.8 VM-scheduling

Default settings for snapshot list

Snapshot resolution: 1

Max snapshot number: same as durations

Nodes and attributes in scenario

Cluster

id

type: short slots: 1

Id of the cluster.

region_id

type: short slots: 1

Region is of current cluster.

data_center_id

type: short slots: 1

Data center id of current cluster.

total_machine_num

type: int slots: 1

Total number of machines in the cluster.

empty_machine_num

type: int slots: 1

The number of empty machines in this cluster. A empty machine means that its allocated CPU cores are 0.

62 Chapter 3. Contents

maro

data_centers

id

type: short slots: 1

Id of current data center.

region_id

type: short slots: 1

Region id of current data center.

zone_id

type: short slots: 1

Zone id of current data center.

total_machine_num

type: int slots: 1

Total number of machine in current data center.

empty_machine_num

type: int slots: 1

The number of empty machines in current data center.

pms

Physical machine node.

id

type: int slots: 1

Id of current machine.

3.13. Data Model 63

maro

cpu_cores_capacity

type: short slots: 1

Max number of cpu core can be used for current machine.

memory_capacity

type: short slots: 1

Max number of memory can be used for current machine.

pm_type

type: short slots: 1

Type of current machine.

cpu_cores_allocated

type: short slots: 1

How many cpu core is allocated.

memory_allocated

type: short slots: 1

How many memory is allocated.

cpu_utilization

type: float slots: 1

CPU utilization of current machine.

energy_consumption

type: float slots: 1

Energy consumption of current machine.

64 Chapter 3. Contents

maro

oversubscribable

type: short slots: 1

Physical machine type: non-oversubscribable is -1, empty: 0, oversubscribable is 1.

region_id

type: short slots: 1

Region id of current machine.

zone_id

type: short slots: 1

Zone id of current machine.

data_center_id

type: short slots: 1

Data center id of current machine.

cluster_id

type: short slots: 1

Cluster id of current machine.

rack_id

type: short slots: 1

Rack id of current machine.

Rack

id

type: int slots: 1

Id of current rack.

3.13. Data Model 65

maro

region_id

type: short slots: 1

Region id of current rack.

zone_id

type: short slots: 1

Zone id of current rack.

data_center_id

type: short slots: 1

Data center id of current rack.

cluster_id

type: short slots: 1

Cluster id of current rack.

total_machine_num

type: int slots: 1

Total number of machines on this rack.

empty_machine_num

type: int slots: 1

Number of machines that not in use on this rack.

regions

id

type: short slots: 1

Id of curent region.

66 Chapter 3. Contents

maro

total_machine_num

type: int slots: 1

Total number of machines in this region.

empty_machine_num

type: int slots: 1

Number of machines that not in use in this region.

zones

id

type: short slots: 1

Id of this zone.

total_machine_num

type: int slots: 1

Total number of machines in this zone.

empty_machine_num

type: int slots: 1

Number of machines that not in use in this zone.

3.14 Event Buffer

Event buffer is the execution engine of the MARO simulation system. Various business scenarios are constructed by
different business event series and the related handler functions. To implement a scenario-specific environment, users
need to provide the definitions of business events and related handler functions. After that, the input events of the
event buffer will be automatically processed based on their priority. The priority of an event is first determined by
its declared execution tick. Events of the same tick will be executed according to the FIFO rule. Currently, only a
single-thread version event buffer is provided.

Initialize an event buffer.
event_buffer: EventBuffer = EventBuffer()

Insert a mock event.
event_buffer.insert_event(event)

Execute events at a specific tick.
executed_events = event_buffer.execute(tick)

3.14. Event Buffer 67

../images/simulator/event_buffer.svg

maro

3.14.1 Event Category

To simplify the implementation of the business logic, MARO provides two kinds of basic event types, which can be
used to construct various event execution pattern:

• Atom event is an event without any dependence. An atom event will be immediately popped out from the event
buffer after execution.

• Cascade event is a series of events with dependencies. An internal event queue is hosted for the sub-events of
each cascade event. Only after all sub-events executed, a cascade event can be popped out from the event buffer.
Furthermore, the cascade event is chainable, which means that events in the internal event queue can also be
cascade events.

3.14.2 Event Format

We provide a general-purpose event format for all the scenarios in MARO. A legal event generally contains the
following properties:

• tick (int): The execution tick of this event.

• event_type (int): The type of this event. It is a customized field, the default value is 0 (PREDE-
FINE_EVENT_ACTION).

• source (str): The id/code of the event generator (not implemented yet).

• target (str): The id/code of the event receiver (not implemented yet).

• payload (Object): It is used to transfer sufficient information to the event handler.

• tag (EventCategory): The tag of the event category. Valid values include ATOM and CASCADE.

• immediate_event_list (list): The sub-event queue of the cascade event. Atom event does not have this field.

• state (EventState): The state of this event. Valid values include PENDING, EXECUTING and FINISHED. The
figure below indicates the state changing of an event:

3.15 Business Engine

MARO provides a pluggable mechanism to isolate the business logic and the simulation kernel parts. For different
business scenarios, specific business engines should be bind to it.

The business engine is responsible for defining:

• Business instance. Generally, the business instances are the resource holders in the business logic. For example:

– The ports and vessels in the CIM scenario;

– The stations in the Citi Bike scenario;

• Business event. Since it is closely related to the actual business logic, the business events are reproduced based
on the existing business log data or generated according to the predefined business rules. For example:

– The receiving of customers’ orders, the vessel departure, etc in the CIM scenario;

– The receiving of the customers’ trip requirements, the finishing of a trip, etc in the Citi Bike scenario;

• Decision event. It is the external interactive interface for the resource optimization. The environment returns
the decision events to the decision agent to trigger the agent’s actions. For example:

68 Chapter 3. Contents

../images/simulator/event_state.svg
../scenarios/container_inventory_management.html
../scenarios/citi_bike.html

maro

– The empty container repositioning operations that triggered by a vessel arrival event in the CIM scenario;

– The bike repositioning operations that triggered when there are too many or too few bikes remained in the
station in Citi Bike scenario;

• Optimize metrics. There are often multiple goals in real business scenarios, these metrics should be defined so
as to be recorded to evaluate the repositioning. For example:

– The shortage that used to measure the number of un-satisfied requirements;

– The cost of the repositioning operations;

As shown in the figure below, the simulator will load the scenario-specific business engine and convert the filled
business time series data into the corresponding business events. After that, the entire simulation system would be
driven by these business events. In short, with the uniformed business engine interface, the simulation of different
business scenarios is only based on the pluggable business engine (scenario-specific).

Generally, the business time series data is read from the historical log or generated by a data generation model.
Currently, for topologies in Citi Bike scenario, data processing is needed before starting the simulation. You can find
the brief introduction of the data processing command in Data Processing.

3.16 RL Toolkit

MARO provides a full-stack abstraction for reinforcement learning (RL) which includes various customizable com-
ponents. In order to provide a gentle introduction for the RL toolkit, we cover the components in a top-down manner,
starting from the learning workflow.

3.16.1 Workflow

The nice thing about MARO’s RL workflows is that it is abstracted neatly from business logic, policies and learning
algorithms, making it applicable to practically any scenario that utilizes standard reinforcement learning paradigms.
The workflow is controlled by a main process that executes 2-phase learning cycles: roll-out and training (Fig. 3.1).
The roll-out phase collects data from one or more environment simulators for training. There can be a single environ-
ment simulator located in the same thread as the main loop, or multiple environment simulators running in parallel on
a set of remote workers (Fig. 3.2) if you need to collect large amounts of data fast. The training phase uses the data
collected during the roll-out phase to train models involved in RL policies and algorithms. In the case of multiple large
models, this phase can be made faster by having the computationally intensive gradient-related tasks sent to a set of
remote workers for parallel processing (Fig. 3.3).

Fig. 3.1: Learning Workflow

Fig. 3.2: Parallel Roll-out

Fig. 3.3: Distributed Training

3.16. RL Toolkit 69

../images/simulator/business_engine.svg
../scenarios/citi_bike.html#data-preparation

maro

3.16.2 Environment Sampler

An environment sampler is an entity that contains an environment simulator and a set of policies used by agents to
interact with the environment (Fig. 3.4). When creating an RL formulation for a scenario, it is necessary to define an
environment sampler class that includes these key elements:

• how observations / snapshots of the environment are encoded into state vectors as input to the policy models.
This is sometimes referred to as state shaping in applied reinforcement learning;

• how model outputs are converted to action objects defined by the environment simulator;

• how rewards / penalties are evaluated. This is sometimes referred to as reward shaping.

In parallel roll-out, each roll-out worker should have its own environment sampler instance.

Fig. 3.4: Environment Sampler

3.16.3 Policy

Policy is the most important concept in reinforcement learning. In MARO, the highest level abstraction of a policy
object is AbsPolicy. It defines the interface get_actions() which takes a batch of states as input and returns
corresponding actions. The action is defined by the policy itself. It could be a scalar or a vector or any other types. Env
sampler should take responsibility for parsing the action to the acceptable format before passing it to the environment.

The simplest type of policy is RuleBasedPolicy which generates actions by pre-defined rules.
RuleBasedPolicy is mostly used in naive scenarios. However, in most cases where we need to train the pol-
icy by interacting with the environment, we need to use RLPolicy. In MARO’s design, a policy cannot train itself.
Instead, polices could only be trained by Algorithm (Trainer) (we will introduce trainer later in this page). There-
fore, in addition to get_actions(), RLPolicy also has a set of training-related interfaces, such as step(),
get_gradients() and set_gradients(). These interfaces will be called by trainers for training. As you may
have noticed, currently we assume policies are built upon deep learning models, so the training-related interfaces are
specifically designed for gradient descent.

RLPolicy is further divided into three types: - ValueBasedPolicy: For valued-based poli-
cies. - DiscretePolicyGradient: For gradient-based policies that generate discrete actions. -
ContinuousPolicyGradient: For gradient-based policies that generate continuous actions.

The above classes are all concrete classes. Users do not need to implement any new classes, but can directly create a
policy object by configuring parameters. Here is a simple example:

ValueBasedPolicy(
name="policy",
q_net=MyQNet(state_dim=128, action_num=64),

)

For now, you may have no idea about the q_net parameter, but don’t worry, we will introduce it in the next section.

70 Chapter 3. Contents

maro

3.16.4 Model

The above code snippet creates a ValueBasedPolicy object. Let’s pay attention to the parameter q_net. q_net
accepts a DiscreteQNet object, and it serves as the core part of a ValueBasedPolicy object. In other words,
q_net defines the model structure of the Q-network in the value-based policy, and further determines the policy’s
behavior. DiscreteQNet is an abstract class, and MyQNet is a user-defined implementation of DiscreteQNet.
It can be a simple MLP, a multi-head transformer, or any other structure that the user wants.

MARO provides a set of abstractions of basic & commonly used PyTorch models like DiscereteQNet, which
enables users to implement their own deep learning models in a handy way. They are:

• DiscreteQNet: For ValueBasedPolicy.

• DiscretePolicyNet: For DiscretePolicyGradient.

• ContinuousPolicyNet: For ContinuousPolicyGradient.

Users should choose the proper types of models according to the type of policies, and then implement their own models
by inheriting the abstract ones (just like MyQNet).

There are also some other models for training purposes. For example:

• VNet: Used in the critic part in the actor-critic algorithm.

• MultiQNet: Used in the critic part in the MADDPG algorithm.

• . . .

The way to use these models is exactly the same as the way to use the policy models.

3.16.5 Algorithm (Trainer)

When introducing policies, we mentioned that policies cannot train themselves. Instead, they have to be trained
by external algorithms, which are also called trainers. In MARO, a trainer represents an RL algorithm, such as
DQN, actor-critic, and so on. These two concepts are equivalent in the MARO context. Trainers take interaction
experiences and store them in the internal memory, and then use the experiences in the memory to train the policies.
Like RLPolicy, trainers are also concrete classes, which means they could be used by configuring parameters.
Currently, we have 4 trainers (algorithms) in MARO:

• DiscreteActorCriticTrainer: Actor-critic algorithm for policies that generate discrete actions.

• DiscretePPOTrainer: PPO algorithm for policies that generate discrete actions.

• DDPGTrainer: DDPG algorithm for policies that generate continuous actions.

• DQNTrainer: DQN algorithm for policies that generate discrete actions.

• DiscreteMADDPGTrainer: MADDPG algorithm for policies that generate discrete actions.

Each trainer has a corresponding Param class to manage all related parameters. For example,
DiscreteActorCriticParams contains all parameters used in DiscreteActorCriticTrainer:

@dataclass
class DiscreteActorCriticParams(TrainerParams):

get_v_critic_net_func: Callable[[], VNet] = None
reward_discount: float = 0.9
grad_iters: int = 1
critic_loss_cls: Callable = None
clip_ratio: float = None
lam: float = 0.9
min_logp: Optional[float] = None

3.16. RL Toolkit 71

maro

An example of creating an actor-critic trainer:

DiscreteActorCriticTrainer(
name='ac',
params=DiscreteActorCriticParams(

get_v_critic_net_func=lambda: MyCriticNet(state_dim=128),
reward_discount=.0,
grad_iters=10,
critic_loss_cls=torch.nn.SmoothL1Loss,
min_logp=None,
lam=.0

)
)

In order to indicate which trainer each policy is trained by, in MARO, we require that the name of the policy start with
the name of the trainer responsible for training it. For example, policy ac_1.policy_1 is trained by the trainer
named ac_1. Violating this provision will make MARO unable to correctly establish the corresponding relationship
between policy and trainer.

More details and examples can be found in the code base (link).

As a summary, the relationship among policy, model, and trainer is demonstrated in Fig. 3.5:

Fig. 3.5: Summary of policy, model, and trainer

3.17 Distributed Toolkit

MARO distributed toolkit provides a unified, fast, and infrastructure-independent interface to support RL distributed
training.

As shown in the overall architecture diagram above, MARO distributed toolkit follows a message-passing pattern
that the cooperation between different components is based on the messages sending and receiving. A typical mas-
ter/worker distributed program usually contains the following steps:

1. The master component will send tasks(w/ or w/o data) to the worker components;

2. The worker components will finish the tasks in their local computing environments or the local devices;

3. The worker components return the computed results to the master component.

According to the actual needs, the communication mode between master and worker components can be synchronous
or asynchronous.

3.17.1 Key Components

There are two key components in the distributed toolkit:

• Communication: It provides the general message passing interfaces, such as (i)send, receive,
(i)broadcast, (i)scatter, etc. The communication component use a replaceable communication pro-
tocol driver to adopt different communication protocol stack (e.g. TCP/IP, InfiniBand). Check the distributed
communication to get more details.

72 Chapter 3. Contents

https://github.com/microsoft/maro/blob/master/examples/rl/cim/policy_trainer.py
../images/distributed/overview.svg
../images/distributed/key_components.svg
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/InfiniBand
./communication.html
./communication.html

maro

• Orchestration: It primarily provides a unified interface for cluster management and job management on differ-
ent infrastructures. Check the distributed orchestration to get more details.

3.18 Distributed Communication

The distributed communication component provides a general message passing mechanism, which is used to build
various communication topologies in the distributed environment. Besides the essential communication primitive
supporting, it also provides the functions of peer discovering, fault recovering (partially), conditional event auto-
dispatching, etc.

3.18.1 Proxy

Providing an implementation of the communication primitives, proxy is the primary entity of the communication
component. Proxy provides a uniformed communication interface, the underlying driver is pluggable based on the
real requirements. Currently, we use ZeroMQ as the default choice. Proxy also provides support for peer discovering
based on Redis.

Message

Message is designed for general purpose, it is used to package the communication content between components. The
main attributes of a message instance include:

• tag: A customized attribute, it can be used to implement the auto-dispatching logic with a conditional event
register table.

• source: The alias of the message sender.

• destination: The alias of the message receiver.

• payload: A Python object for remote function call.

• session_id (auto-generated): UUID of a specific session, one session may include multiple messages.

• message_id (auto-generated): UUID of a specific message.

from maro.communication import Message

message = Message(tag="check_in",
source="worker_001",
destination="master",
body="")

Session Message

We provide two kinds of predefined session types for common distributed scenarios:

• Task Session: It is used to describe a computing task sent from master to worker. Three stages are included:

1. The master sends the task request(s) to the worker(s);

2. Once the worker(s) receiving the task(s), the worker(s) start to finish the task(s);

3. The worker(s) return the computing result(s) to the master.

3.18. Distributed Communication 73

./orchestration.html
https://zeromq.org/
https://redis.io/
../images/distributed/proxy.svg

maro

• Notification Session: It is used for information syncing and only includes two stages:

1. The sender sends out the notification message;

2. The receiver(s) receive the notification message.

The stages of each session are maintained internally by the proxy.

from maro.communication import SessionMessage, SessionType

task_message = SessionMessage(tag="sum",
source="master",
destination="worker_001",
body=[0, 1, 2, ...],
session_type=SessionType.TASK)

notification_message = SessionMessage(tag="check_out",
source="worker_001",
destination="master",
body="",
session_type=SessionType.NOTIFICATION)

Communication Primitives

Proxy provides a set of general-purpose communication primitives that support both blocking and non-blocking cases.
These primitives are decoupled from the underlying implementation of the communication driver (protocol). The main
primitives are listed below:

• send: Unicast. It is a blocking, one-to-one sending mode. It will watch and collect the reply message from the
remote peer.

• isend: The non-blocking version of the send. A message session ID will be immediately returned, which
can be used by receive_by_id.

• scatter: An advanced version of send. Is is used to send message(s) to peer(s) and watch and collect reply
message(s) from the peer(s). scatter is not a real multi-cast, each message will go through the full TCP/IP
stack (ZeroMQ driver). If the message you want to send is completely same and you want better performance,
use the broadcast interface instead.

• iscatter: The non-blocking version of the scatter. The related messages session ID(s) will be returned
immediately, which can be used by receive_by_id.

• broadcast: A blocking function call which is used to broadcast the message to all subscribers, it will watch
and collect all subscribers’ reply messages.

• ibroadcast: The non-blocking version of the broadcast. The related messages session IDs will be re-
turned immediately, which can be used by receive_by_id.

• receive: It is used to continually receive the message.

• receive_by_id: It only receives the message(s) with the given session ID(s).

74 Chapter 3. Contents

maro

3.18.2 Conditional Event Register Table

The conditional event register table provides a message auto-despatching mechanism. By registering the
conditional event and related handler function to the register table, the handler function will be au-
tomatically executed with the received messages when the event conditions are met.

Conditional event is used to declare the required message group for auto-triggering the related handler
function. The unit event is the minimal component in the conditional event, it follows a three-stage format:
source:tag:amount.

• source: It is used to declare the required message source. The longest-prefix matching is supported.

– * is used to present any sources.

• tag: The tag attribute of the message instance.

– * is used to present any tags.

• amount: The required message instance amount. Both a absolute integer and a relative percentage are valid for
this field.

– % is used to represent the relative percentages, such as 60%, 10%, etc.

unit_event_abs = "worker:update:10"

unit_event_rel = "worker:update:60%"

To support more complex business logic, we provide two operations: AND and OR to combine unit events up:

• AND: Valid for multiple unit events and combined unit events. The combined event condition is met if all the
conditions of the sub-events are met.

• OR: Valid for multiple unit events and combined unit events. The combined event condition is met if any sub-
event meets the condition.

combined_event_and = ("worker_01:update:2",
"worker_02:update:3",
"AND")

combined_event_or = ("worker_03:update:1",
"worker_04:update:5",
"OR")

combined_event_mix = (("worker_01:update:2", "worker_02:update:3", "AND"),
"worker_03:update:1",
"OR")

Handler function is a user-defined callback function that is bind to a specific conditional event. When the
condition of the event is met, the related messages will be sent to the handler function for its execution.

A common handler function signature
def handler(that, proxy, messages):

"""
Conditional event handler function.

Args:
that: local instance reference, which needs to be operated.

(continues on next page)

3.18. Distributed Communication 75

../images/distributed/register_table.register.svg
../images/distributed/register_table.trigger.svg

maro

(continued from previous page)

proxy: the proxy reference for remote communication.
messages: received messages.

"""
pass

3.18.3 Distributed Decorator

Distributed decorator is a helper for generating a distributed worker class from a local functional class.

from maro.communication import dist, Proxy

Initialize proxy instance for remote communication.
proxy = Proxy(group_name="master-worker",

component_type="worker",
expected_peers=[("master", 1)])

Declare the trigger condition of rollout event.
rollout_event = "master:rollout:1"

Implement rollout event handler logic.
def on_rollout(that, proxy, messages):

pass

Assemble event-handler directory.
handler_dict = {rollout_event: on_rollout}

Convert a local functional class to a distributed one.
@dist(proxy, handler_dict)
class Worker:

def __init__(self):
pass

3.19 Distributed Orchestration

MARO provides easy-to-use CLI commands to provision and manage training clusters on cloud computing service like
Azure. These CLI commands can also be used to schedule the training jobs with the specified resource requirements.
In MARO, all training job related components are dockerized for easy deployment and resource allocation. It provides
a unified abstraction/interface for different orchestration framework see (e.g. Grass, K8s).

3.19.1 Process

The process mode is part of the MARO CLI, which uses multi-processes to start the training jobs in the localhost
environment. To align with Grass and K8s, the process mode also uses Redis for job management. The process mode
tries to simulate the operation of the real distributed cluster in localhost so that users can smoothly deploy their code
to the distributed cluster. Meanwhile, through the training in the process mode, it is a cheaper way to find bugs that
will happens during the real distributed training. It has the following advantages:

• Behavior is consistent with the real distributed CLI.

• Friendly to operate.

76 Chapter 3. Contents

https://azure.microsoft.com/en-us/
../images/distributed/orch_overview.svg

maro

• Lightweight, no other dependencies are required.

In the Process mode:

• All jobs will be started by multi-processes and managed by MARO Process CLI.

• Customized settings support, such as Redis, the number of parallel running jobs, and agents check interval.

• For each job’s start/stop, a ticket will be pushed into job queues. The agents monitor those job queues and
start/stop job components.

Check Localhost Provisioning to get how to use it.

3.19.2 Grass

Grass is an orchestration framework developed by the MARO team. It can be confidently applied to small/middle size
cluster (< 200 nodes). The design goal of Grass is to speed up the development of distributed algorithm prototypes. It
has the following advantages:

• Fast deployment in a small cluster.

• Fine-grained resource management.

• Lightweight, no complex dependencies required.

Check Grass Cluster Provisioning on Azure and Grass Cluster Provisioning in On-Premises Environment to get how
to use it.

Modes

We currently have two modes in Grass, and you can choose whichever you want to create a Grass cluster.

grass/azure

• Create a Grass cluster with Azure.

• With a valid Azure subscription, you can create a cluster with one command from ground zero.

• You can easily scale up/down nodes as needed, and start/stop nodes to save costs without messing up the current
environment.

• Please note that the maximum number of VMs in grass/azure is limited by the available dedicated IP addresses.

grass/on-premises

• Create a Grass cluster with machines on hand.

• You can join a machine to the cluster if the machine is in the same private network as the Master.

3.19. Distributed Orchestration 77

../installation/multi_processes_localhost_provisioning.html
../images/distributed/orch_process.svg
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-faq#what-address-ranges-can-i-use-in-my-vnets

maro

Components

Here’s the diagram of a Grass cluster with all the components tied together.

Master Components

• redis: A centralized DB for runtime data storage.

• fluentd: A centralized data collector for log collecting.

• samba-server: For file sharing within the whole cluster.

• master-agent: A daemon service for status monitoring and job scheduling.

• master-api-server: A RESTFul server for cluster management. The MARO CLI can access this server to control
cluster and get cluster information in an encryption session.

Node Components

• samba-client: For file sharing.

• node-agent: A daemon service for tracking the computing resources and container statues of the node.

• node-api-server: An internal RESTFul server for node management.

Communications

Outer Environment to the Master

• The communications from outer environment to the Master is encrypted.

• Grass will use the following paths in the OuterEnv-Master communications:

– SSH tunnel: For file transfer and script execution.

– HTTP connection: For connection with master-api-server, use RSA+AES hybrid encryption.

Communications within the Cluster

• The communications within the cluster is not encrypted.

• Therefore, user has the responsibility to make sure all Nodes are connected within a private network and restrict
external connections in the cluster.

3.19.3 K8s

MARO also supports Kubernetes (k8s) as an orchestration option. With this widely adopted framework, you can easily
build up your MARO Cluster with hundreds and thousands of nodes. It has the following advantages:

• Higher durability.

• Better scalability.

We currently support the k8s/aks mode in Kubernetes, and it has the following features:

78 Chapter 3. Contents

../images/distributed/orch_grass.svg
../images/distributed/orch_k8s.svg

maro

• The dockerized job component runs in Kubernetes Pod, and each Pod only hosts one component.

• All Kubernetes Pods are registered into the same virtual network using Container Network Interface(CNI).

• Azure File Service is used for file sharing in all Pods.

• Azure Container Registry is included for image management.

Check K8S Cluster Provisioning on Azure to see how to use it.

3.20 Dashboard Visualization

Env-dashboard is a post-experimental visualization tool, aims to provide more intuitive environment information,
which will guide the design of the algorithm and continually fine-tuning.

Currently, the visualization of senario Container Inventory Management and Citi Bike are supported.

3.20.1 Dependency

Module streamlit and altair should be pre-installed.

• streamlit

• altair

Install them with:

pip install streamlit altair

3.20.2 How to Use?

Generate dumped data

The dumped data from environment is the data source of visualization. To generate data, user needs to specify the
parameter options when creating Env object. Type of value of this parameter should be Dictionary.

If user does not need to dump data, then there is no need to pass value to this parameter. If the value for key “enable-
dump-snapshot” of this parameter is an empty string, data would be dumped to the folder which start the command.
If user specifies the value for key “enable-dump-snapshot” of this parameter with the path of a local file folder, and
the dir_path of the local file folder does exist, data would be dumped to this folder. To be specific, each dump request
would generate a data folder with a timestamp as the suffix in the local file folder.

opts_have_path = {"enable-dump-snapshot": "./dump_data"}

opts_have_no_path = {"enable-dump-snapshot": ""}

dump data to folder ./dump_data.
env = Env(scenario="cim", topology="toy.5p_ssddd_l0.0",

start_tick=0, durations=100, options=opts_have_path)

dump data to the folder which run the command.

(continues on next page)

3.20. Dashboard Visualization 79

https://github.com/containernetworking/cni
https://www.streamlit.io/
https://altair-viz.github.io/

maro

(continued from previous page)

env = Env(scenario="cim", topology="toy.5p_ssddd_l0.0",
start_tick=0, durations=100, options=opts_have_no_path)

Data would be dumped automatically when the Env object is initialized. To get the complete reference, please view
the file maro/examples/hello_world/cim/hello_streamlit.py.

For more details about Environment, please refer to Environment.

Launch Visualization Tool

To start this visualization tool, user need to input command following the format:

maro inspector dashboard --source_path SNAPSHOT_DUMP_DATA_FOLDER --force {true/false}

Parameter force refers to regenerate cross-epoch summary data or not, default value is ‘true’. Parameter source_path
refers to the path of dumped snapshot files. Every experiment would generate a data folder with a timestamp as the
suffix, which we refer as SNAPSHOT_DUMP_DATA_FOLDER. The input of the parameter source_path should be
the path of SNAPSHOT_DUMP_DATA_FOLDER.

Make sure that your SNAPSHOT_DUMP_DATA_FOLDER’s structure is similar as following:

Folder Structure

./SNAPSHOT_DUMP_DATA_FOLDER
epoch_# # folders to restore data of each epoch.

{resource_holder}.csv # attributes of current epoch.
manifest.yml # basic info like scenario name, number of

→˓epoches.
index_name_mapping file # relationship between an index and its name of

→˓resource holders.
{resource_holder}_summary.csv # cross-epoch summary information.

If any file is missed compared with the expected folder structure displayed above, the command line would prompt
users with an error message. The visualization tool looks for the free port to launch page in sequence, starting with
port 8501. The command line would print out the selected port.

3.20.3 Feature List

Basically, each scenario has 2 parts of visualization: intra-epoch view and inter-epoch view. User could switch between
them freely.

80 Chapter 3. Contents

simulation_toolkit.html

maro

Intra-epoch view

User could view detailed information of selected resource holder or tick under this mode. In order for users to better
understand the data, we separate the data into time dimension and space dimension. Users could view both the value
of a resource holder’s property over time and the state of all resource holders at a selected time (e.g. tick).

Content of intra-epoch view is varied between senarios. For example, in senario container_inventory_management,
the attributes of resource holders are relatively complex. Thus, this view is divided into two parts: Accumulated
Attributes and Detail Attributes. The former one includes the heat map of transfer volume, top-k attributes summary,
accumulated attributes summary. The latter one includes the chart of two resource holders: Port and Vessel attributes in
the scenario container_inventory_management. Detailed introduction please refer to Container Inventory Management
Visualization.

The content of senario citi_Bike is much simpler, mainly including top-k attributes summary and the chart of resource
holder: Station in senario citi_bike. Detailed introduction please refer to Citi Bike Visualization.

Epoch/Snapshot/Resource Holder Index Selection

To view the details of a resource holder or a tick, user could select the specific index of epoch/snapshot/resource holder
by sliding the slider on the left side of page.

Snapshot/Resource Holder Sampling Ratio Selection

To view trends in the data, or to weed out excess information, user could select the sampling ratio of snapshot/resource
holder by sliding to change the number of data to be displayed.

Formula Calculation

User could generate their own attributes by using pre-defined formulas. The results of the formula calculation could
be reused as the input parameter of formula.

Inter-epoch view

User could view cross-epoch information in this view. In order to make users intuitively observe the results of the
iterative algorithm, such as whether the results converge as expected, we extracted important attributes of resource
holder from each epoch as a summary of the current epoch and display them centrally in this view. Users are free to
choose the interval they care about and the sampling rate within the selected interval. Line chart and bar chart can
effectively help users to know the results of the experiment.

3.20. Dashboard Visualization 81

../scenarios/container_inventory_management.html#Visualization
../scenarios/container_inventory_management.html#Visualization
../scenarios/citi_bike.html#Visualization

maro

Epoch Sampling Ratio Selection

To view trends in the data, or to weed out excess information, user could select the sampling ratio of epoch by sliding
to change the number of data to be displayed.

Formula Calculation

Please refer to Formula Calculation.

3.20.4 Examples

Examples of each scenarios please refer to docs of each scenarios:

• Container Inventory Management.

• Citi Bike.

3.21 Geographic Visualization

We can use Env-geographic for both finished experiments and running experiments. For finished experiments, the local
mode is enabled for users to view experimental data in order to help users to make subsequent decisions. If a running
experiment is selected, the real-time mode will be launched by default, it is used to view real-time experimental data
and judge the effectiveness of the model. You can also freely change to local mode for the finished epoch under
real-time mode.

3.21.1 Dependency

Env-geographic’s startup depends on docker and docker-compose. Therefore, users need to install docker on the
machine and ensure that it can run normally. User could get docker through Docker installation.

We suggest that the version of docker should >= 1.20 and the version of docker-compose should >= 1.27.

For windows users, make sure to switch on your Hyper-V service to ensure docker could start successfully. Besides,
users should make sure that their machine could execute shell commands in any directory. We suggest that windows
users could install git bash to meet this requirement.

3.21.2 How to Use?

Env-geographic has 3 parts: front-end, back-end and database. Users need 2 steps to start this tool:

1. Start the database and choose an experiment to be displayed.

2. Start the front-end and back-end service with specified experiment name.

82 Chapter 3. Contents

../scenarios/container_inventory_management.html#Visualization
../scenarios/citi_bike.html#Visualization
https://docs.docker.com/get-docker/

maro

Start database

Firstly, user need to start the local database with command:

maro inspector geo --start database

After the command is executed successfully, user could view the local data with localhost:9000 by default. If the
default port is occupied, user could obtain the access port of each container through the following command:

docker container ls

User could view all experiment information by SQL statement:

SELECT * FROM maro.experiments

Data is stored locally at the folder maro/maro/streamit/server/data.

Choose an existing experiment

To view the visualization of experimental data, user need to specify the name of experiment. User could choose an
existing experiment or start an experiment either.

User could select a name from local database.

3.21. Geographic Visualization 83

maro

Create a new experiment

Currently, users need to manually start the experiment to obtain the data required by the service.

To send data to database, there are 2 compulsory steps:

1. Set the environmental variable to enable data transmission.

2. Import relevant package and modify the code of environmental initialization to send data.

User needs to set the value of the environment variable “MARO_STREAMIT_ENABLED” to “true”. If user wants to
specify the experiment name, set the environment variable “MARO_STREAMIT_EXPERIMENT_NAME”. If user
does not set this value, a unique experiment name would be processed automatically. User could check the experiment
name through database. It should be noted that when selecting a topology, user must select a topology with specific
geographic information. The experimental data obtained by using topology files without geographic information
cannot be used in the Env-geographic tool.

User could set the environmental variable as following example:

os.environ["MARO_STREAMIT_ENABLED"] = "true"

os.environ["MARO_STREAMIT_EXPERIMENT_NAME"] = "my_maro_experiment"

To send the experimental data by episode while the experiment is running, user needs to import the package streamit
with following code before environment initialization:

Import package streamit
from maro.streamit import streamit
Initialize environment and send basic information of experiment to database.
env = Env(scenario="cim", topology="global_trade.22p_l0.1",

start_tick=0, durations=100)

for ep in range(EPISODE_NUMBER):
Send experimental data to database by episode.
streamit.episode(ep)

To get the complete reference, please view the file maro/examples/hello_world/cim/hello_geo_vis.py.

After starting the experiment, user needs to query its name in local database to make sure the experimental data is sent
successfully.

Start service

To start the front-end and back-end service, user need to specify the experiment name. User could specify the port by
adding the parameter “front_end_port” as following command:

maro inspector geo --start service --experiment_name YOUR_EXPERIMENT_NAME --front_end_
→˓port 8080

Generally, the backend service runs on a local machine, occupying port 5000. If port 5000 is already occupied, the
program would find another free port starting from 5000.

84 Chapter 3. Contents

maro

To be specific, if user would like to run the backend service in docker rather on a local machine, please run the shell
script run_docker.sh under the folder maromaroclimaro_real_time_vis. It should be noted that if user run backend
service with docker, data processing may be slower than local.

The program will automatically determine whether to use real-time mode or local mode according to the data status
of the current experiment.

3.21.3 Feature List

For the convenience of users, Env-geographic tool implemented some features so that users can freely view experi-
mental data.

Real-time mode and local mode

Local mode

In this mode, user could comprehend the experimental data through the geographic information and the charts on both
sides. By clicking the play button in the lower left corner of the page, user could view the dynamic changes of the
data in the selected time window. By hovering on geographic items and charts, more detailed information could be
displayed.

The chart on the right side of the page shows the changes in the data over a period of time from the perspectives of
overall, port, and vessel.

The chart on the left side of the page shows the ranking of the carrying capacity of each port and the change in carrying
capacity between ports in the entire time window.

Real-time mode

The feature of real-time mode is not much different from that of local mode. The particularity of real-time mode lies
in the data. The automatic playback speed of the progress bar in the front-end page is often close to the speed of the
experimental data. So user could not select the time window freely in this mode.

Besides, user could change the mode by clicking. If user choose to view the local data under real-time mode, the
experimental data generated so far could be displayed.

Geographic data display

In the map on the page, user can view the specific status of different resource holders at various times. Users can
further understand a specific area by zooming the map. Among them, the three different status of the port: Surplus,
Deficit and Balance represent the quantitative relationship between the empty container volume and the received order
volume of the corresponding port at that time.

3.21. Geographic Visualization 85

maro

Data chart display

The ranking table on the right side of the page shows the throughput of routes and ports over a period of time. While
the heat-map shows the throughput between ports over a period of time. User can hover to specific elements to view
data information.

The chart on the left shows the order volume and empty container information of each port and each vessel. User can
view the data of different resource holders by switching options.

In addition, user can zoom the chart to display information more clearly.

Time window selection

This feature is only valid in local mode. User can select the starting point position by sliding to select the left starting
point of the time window, and view the specific data at different time.

In addition, the user can freely choose the end of the time window. When the user plays this tool, it will loop in the
time window selected by the user.

86 Chapter 3. Contents

	Key Components
	Quick Start
	Contents
	Package
	Playground Docker Image
	Grass Cluster Provisioning on Azure
	Grass Cluster Provisioning in On-Premises Environment
	K8S Cluster Provisioning on Azure
	Multi-processes Localhost Provisioning
	Container Inventory Management (CIM)
	Bike Repositioning (Citi Bike)
	Virtual Machine Scheduling (VM Scheduling)
	Command support for scenarios
	Greedy Policy for Citi Bike
	Simulation Toolkit
	Data Model
	Event Buffer
	Business Engine
	RL Toolkit
	Distributed Toolkit
	Distributed Communication
	Distributed Orchestration
	Dashboard Visualization
	Geographic Visualization

